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The Term Structure of Equity and Variance Risk Premia

Abstract

We study the term structure of variance swaps, equity and variance risk premia. A model-

free analysis reveals a significant price jump component in variance swaps. A model-based

analysis shows that investors’ willingness to ensure against volatility risk increases after a

market drop. This effect is stronger for short horizons, but more persistent for long horizons.

During the financial crisis investors demanded large risk premia to hold equities, but the

risk premia largely depended and strongly decreased with the holding horizon. The term

structure of equity and variance risk premia responds differently to various economic factors.

Keywords: Variance Swap, Stochastic Volatility, Likelihood Approximation, Term

Structure, Equity Risk Premium, Variance Risk Premium.

JEL Codes: C51, G12, G13.
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1. Introduction

Over the last decade, the demand for volatility derivative products has grown exponentially,

driven in part by the need to hedge volatility risk in portfolio management and derivative

pricing. In 1993, the Chicago Board Options Exchange (CBOE) introduced the VIX as a

volatility index computed as an average of the implied volatilities of short term, near the money,

S&P100 options. Ten years later, the definition of the VIX was amended to become based on

the more popular S&P500, itself the underlying of the most liquid index options (SPX), and

to be computed in a largely model-free manner as a weighted average of option prices across

all strikes at two nearby maturities, instead of relying on the Black–Scholes implied volatilities

(e.g., Carr and Wu (2006).) Shortly thereafter, VIX futures and options on VIX were introduced

at the CBOE Futures Exchange (CFE). Carr and Lee (2009) provide an excellent history of

the market for volatility derivatives and a survey of the relevant methodologies for pricing and

hedging volatility derivatives products.

Among volatility derivatives, variance swap (VS) contracts can be thought of as the basic

building block. These are in principle simple contracts: the fixed leg agrees at inception that

it will pay a fixed amount at maturity, the VS rate, in exchange to receiving a floating amount

based on the realized variance of the underlying asset, usually measured as the sum of the

squared daily log-returns, over the life of the swap. One potential difficulty lies in the path-

dependency introduced by the realized variance.

The payoff of a VS can be replicated, under certain conditions, by dynamic trading in the

underlying asset and a static position in vanilla options on that same underlying and maturity

date. This insight, originally due to Neuberger (1994) and Dupire (1993), meant that the

path-dependency implicit in VS could be circumvented; it also made possible an important

literature devoted to analyzing and exploiting the various hedging errors when attempting to

replicate a given VS (e.g., Carr and Madan (1998), Britten-Jones and Neuberger (2000), Jiang
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and Tian (2005), Jiang and Oomen (2008), Carr and Wu (2009), Carr and Lee (2010).) Because

of the interest in replicating a given contract, VS rates have generally been studied at a single

maturity.

But VS rates give rise naturally to a term structure, by varying the maturity at which the

exchange of cash flows take place. The goal of this paper is to study the term structure of VS,

equity and variance risk premia, to understand the implications for investors’ perception of risk,

and to determine which economic variables may drive these risk premia.

Studying the term structure of VS and risk premia is interesting for a number of reasons.

First, the VS market is relatively unexplored and important event compared to option markets;

indeed, the CBOE has listed new VS contracts since 2012.1 Second, the term structure of VS

provides directly market expectations about future volatility. This is in contrast for example to

the option price surface that is affected by many factors. Thus, studying the term structure of

VS should allow us to accurately estimate the term structure of variance risk premia. Third,

equity and variance risk premia over different time horizons may respond to different economic

indicators, uncovering the term structure of investors’ perception of those risks. To investigate

these aspects, we use actual, rather than synthetic, daily VS rates on the S&P500 index with

fixed time to maturity of 2-, 3-, 6-, 12- and 24-month from January 4, 1996 to September 2,

2010.

We use a model-free method to assess the price jump component embedded in VS rates.

Specifically, we compare VS rates and VIX-type indices extracted from options on the S&P500

index (SPX) for various maturities, using the CBOE and Carr and Wu (2009) methodologies.

We find that a large and time-varying price jump component is embedded in VS rates, which

becomes even more pronounced in the latter part of the sample. This indicates that either

the price jump risk is heavily priced by VS traders or some segmentation between the VS and

1Since December 2012 the CBOE has listed new contracts called “S&P 500 Variance Futures.” These are
exchange-traded, marked-to-market variance swaps on the S&P500 with maturities ranging up to two years. See
http://www.cfe.cboe.com/Products/Spec VA.aspx.
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option markets exits or both.

Various aspects of the VS term structure cannot be studied in a model-free manner, because

the necessary data are either insufficient in quantity or simply unavailable.2 To further the

analysis of the VS term structure, we therefore rely on a parametric stochastic volatility model,

namely a two-factor stochastic volatility model with price jumps and variance jumps, which is

consistent with the salient empirical features of VS rates documented in the model-free analysis.

The model is estimated using maximum-likelihood, combining time series information on stock

returns with cross sectional information on the term structure of VS rates, thereby making

inference in particular about risk premia theoretically sound.

Our model-based analysis shows that the integrated variance risk premium (IVRP), i.e., the

ex-ante expected difference between objective and risk neutral integrated variance, is negative

and usually exhibits a downward-sloping term structure. A negative risk premium implies that

the VS holder is willing to pay a “large” premium, the VS rate, to get protection against

volatility risk, which in turn induces a negative VS payoff on average at maturity. The down-

ward sloping term structure means that the longer the maturity, the more negative the expected

VS payoff. Moreover, after a volatility spike, investors’ willingness to ensure against future

volatility risk increases with the time horizon. This effect is stronger over short horizons (e.g.,

two months) but more persistent over long horizons (e.g., two years).

We also find that the term structure of the IVRP due to negative price jumps is negative,

generally downward sloping in quiet times but upward sloping in turbulent times. Thus, the

contribution of price jumps is modest in quiet times, but important during market drops, and

mostly impacts the short-end of the IVRP term structure. This indicates that short-term

variance risk premia mainly reflect investors’ fear of a market drop, rather than the impact of

2For example, a model-free analysis of the term structure of jump risk in VS would require observations on long
lived, out-of-the-money, SPX options with a fixed time to maturity. These options are, unfortunately, unavailable
or at least not sufficiently liquid. Available options have discrete strike prices and fixed maturities, rather than
fixed time to maturities. To carry out such a model-free analysis, interpolation and extrapolation schemes across
strike prices and time to maturities are necessary with the potential to introduce significant approximation errors.
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stochastic volatility on the investment set. This finding carries clear asset pricing implications.

Equilibrium models seeking to explain asset returns and their volatility in the short run should

feature price jumps, investors’ aversion to jump risk, and intertemporal utility structures, in

addition to stochastic volatility.

Next, we link the term structure of IVRP to economic indicators. Through regression

analysis, we show that the term structure of IVRP responds to variables proxying for equity,

option, corporate and Treasury bond market conditions. Not surprisingly, a drop in the S&P500

index induces a more negative IVRP, but this effect “quickly dies out” in the term structure of

the IVRP, becoming statistically insignificant beyond a 6-month horizon. In other words, daily

changes of the S&P500 index strongly impact investors’ perception of volatility risk, but only

over short horizons. Similarly, an increase of corporate credit riskiness increases the IVRP in

absolute value but only over relatively short horizons (up to six months). This suggests that VS

market participants view this phenomenon as being transient in terms of its impact on volatility

risk. The VIX index, despite being a 30-day volatility index, has a fairly uniform and strong

impact throughout the term structure of the IVRP, acting more like a “level factor,” rather

than a short-term factor, for variance risk premia.

In analogy to the term structure of IVRP, we also study the term structure of the equity risk

premium. We define the integrated equity risk premium, IERP, as the ex-ante expected excess

return from buying and holding the S&P500 index over a fixed time horizon, such as 2-month

or 1-year. We find that equity risk premia are strongly countercyclical, and become large and

positive during crisis times. The term structure of IERP is slightly upward sloping in quiet times

but steeply downward sloping during market crashes. This indicates that during a financial crisis

investors demand large risk premia to hold risky stocks, but the risk premia largely depend and

strongly decrease with the holding horizon. For example, in Fall 2008, after Lehman Brothers’

bankruptcy, our estimates of 2-month equity risk premia reached historically high values, around

50%. During average volatility periods, equity risk premia are approximately 6.5%, in line with
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historical estimates.

Finally, as for the IVRP, we conduct regression analysis to understand which economic

variables may drive the term structure of the IERP. We find that an increase in the VIX index

increases the IERP, but the longer the time horizon the smaller the effect. Hence, in contrast to

the IVRP, the VIX index does not behave like a level factor for the IERP. Indicators of corporate

credit riskiness have a positive and decreasing impact on the term structure of the IERP. This

suggests that distress conditions of the corporate sector exacerbate the countercyclical variation

of the IERP, but only for the IERP over short horizons (up to six months). Other variables

impact the slope of the IERP term structure. For example, the slope of the yield curve, which

increased significantly in Fall 2008, has a positive impact on the short-end and a negative impact

on the long-end of the IERP term structure. To the extent that the slope of the yield curve

reflects “flight-to-liquidity”, investors’ selling pressure of equities (to increase their allocations to

treasuries) appears to increase the IERP over short horizons. Investors also seem to anticipate

that they will rebalance their portfolios from treasuries to equities when the crisis will be over,

and thus the negative impact of the slope of the yield curve on IERP over long horizons (e.g., one

year). All in all, our empirical findings point to a rich impact of economic indicators throughout

the term structure of equity and variance risk premia.

This paper is related to various strands of the literature. A number of studies have estimated

stochastic volatility models to recover risk premia; see, e.g., Bakshi et al. (1997), Pan (2002),

Broadie et al. (2007) and references therein. However, most of these studies fit stochastic

volatility models to option prices and analyze instantaneous risk premia. We consider a different

important market and analyze risk premia over fixed time horizons, namely the term structure

of risk premia. While any stochastic volatility model has implications for the term structure of

risk premia, models fitted directly to the term structure of VS should benefit from the VS rates

being the term structure of variance risk.

A fast growing literature has been focusing on the variance risk premium, albeit almost
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exclusively on a single maturity. Bollerslev et al. (2009) linked the one-month variance risk

premium to time-varying economic uncertainty and show empirically that this premium predicts

aggregate market returns. Bekaert and Hoerova (2014) expand the evidence on the predictive

power of one-month variance risk premium for stock returns. Carr and Wu (2009), Bollerslev

and Todorov (2011) and others provide model-free analysis of a single maturity variance risk

premium. Mueller et al. (2013) study the term structure of Treasury bond variance risk premia

and document a significant negative risk premium, albeit approaching zero when the time

horizon increases. Recent studies investigate VS contracts. For example Amengual (2008)

studies the term structure of S&P500 variance risk premia, under the assumption that the

jump risk premium is zero. Dew-Becker et al. (2014) investigate the term structure of zero-

coupon VS claims. Egloff et al. (2010) and Filipović et al. (2015) study optimal investment in

VS contracts. We complement these studies by analyzing the term structure of variance risk

premia, and linking these risk premia to economic indicators.

Several studies have analyzed the equity risk premium and the associated “puzzle”, but

mainly focusing on a single horizon (e.g., one year) and relying on ex-post market returns; see,

e.g., Mehra (2006) for a review. We study the term structure of the ex-ante equity risk premia.

Recently, van Binsbergen et al. (2013) and Martin (2013) provide related studies on equity risk

premia, using different datasets and methods, and they also document large swings in equity

risk premia, comparable to those we document here. We complement these studies by analyzing

the term structure of equity risk premia and their economic drivers.

The structure of the paper is as follows. Section 2 briefly describes variance swaps and their

properties. Section 3 introduces the model and estimation methodology. Section 4 presents the

actual estimates. Section 5 reports risk premium estimates. Section 6 concludes. The Appendix

contains technical derivations.
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2. Variance Swaps

We introduce the general setup we will work with in order to analyze the term structure of VS

contracts. Let (Ω,F , (Ft)t≥0, P ) be a filtered probability space satisfying usual conditions (e.g.,

Protter (2004)), with P denoting the objective or historical probability measure. Let S be a

semimartingale modeling the stock (or index) price process with dynamics

dSt/St− = µt dt+
√
vt dW̃

P
t + (exp(Js,Pt )− 1) dNP

t − νPt dt (1)

where µt is the drift, vt the spot variance, W̃P
t a Brownian motion, NP

t a counting jump

process with stochastic intensity λPt , Js,Pt the random price jump size, and νPt = gPt λ
P
t the

compensator with gPt = EPt [exp(Js) − 1] and EPt the time-t conditional expectation under P .

When a jump occurs, the induced price change is (St−St−)/St− = exp(Js,Pt )−1, which implies

that log(St/St−) = Js,Pt . Thus, Js,Pt is the random jump size of the log-price under P . When no

confusion arises superscripts and subscripts are omitted. The dynamics of the drift, variance,

and jump component are left unspecified and in this sense the first part of the analysis of VS

contracts will be model-free. Indeed, the Model (1) subsumes virtually all models used in finance

with finite jump activity.

Let t = t0 < t1 < · · · < tn = t+ τ denote the trading days over a given time period [t, t+ τ ],

for e.g., six months. The typical convention employed in the market is for the floating leg of

the swap to pay at t+ τ the annualized realized variance defined as the annualized sum of daily

squared log-returns (typically closing prices) over the time horizon [t, t+ τ ] :

RVt,t+τ =
252

n

n∑
i=1

(
log

Sti
Sti−1

)2

. (2)

Like any swap, no cash flow changes hands at inception of the contract at time t; the fixed leg

of the VS agrees to pay an amount fixed at time t, defined as the VS rate, VSt,t+τ . Any payment
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takes place in arrears. Unlike many other swaps, such as interest rates or currency swaps, a

VS does not lead to a repeated exchange of cash flows, but rather to a single one at expiration,

at time t + τ . Therefore, at maturity, t + τ , the long position in a VS contract receives the

difference between the realized variance between times t and t + τ , RVt,t+τ , and the VS rate,

VSt,t+τ , which was fixed at time t. The difference is multiplied by a fixed notional amount to

convert the payoff to dollar terms:

(RVt,t+τ −VSt,t+τ )× (notional amount).

If the time period [t, t+τ ] will be an unexpected high volatility period, then the realized variance

RVt,t+τ will be higher than the VS rate VSt,t+τ set at time t, which in turn will trigger a positive

payoff to the long side of the contract. Thus, variance swaps are effectively insurance contracts

against high volatility.

The analysis of VS contracts is simplified when the realized variance is replaced by the

quadratic variation of the log-price process. It is well-known that when supi=1,...,n (ti − ti−1)→

0 the realized variance in Equation (2) converges in probability to the annualized quadratic

variation of the log-price, QVt,t+τ , (e.g., Jacod and Protter (1998)):

252

n

n∑
i=1

(
log

Sti
Sti−1

)2

−→ 1

τ

∫ t+τ

t
vu du+

1

τ

Nt+τ∑
u=Nt

(Jsu)2 = QVc
t,t+τ + QVj

t,t+τ = QVt,t+τ (3)

which is itself the sum of two terms, one due to the continuous part of the Model (1), QVc
t,t+τ ,

and one to its discontinuous or jump part, QVj
t,t+τ . This approximation is commonly adopted

in practice and is quite accurate at the daily sampling frequency (e.g., Broadie and Jain (2008)

and Jarrow et al. (2013)), as is the case in our dataset. Market microstructure noise, while

generally an important concern in high frequency inference, is largely a non-issue at the level

of daily returns.
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As usual, we assume absence of arbitrage, which implies the existence of an equivalent risk

neutral measure Q. By convention, the VS contract has zero value at inception. Assuming

that the interest rate does not depend on the quadratic variation, which is certainly a tenuous

assumption and one commonly made when valuing these contracts, no arbitrage implies that

the VS rate is

VSt,t+τ = EQt [QVt,t+τ ] = vQt,t+τ + EQt [(Js)2]λ
Q
t,t+τ (4)

where EQt denotes the time-t conditional expectation under Q, vQt,t+τ = EQt [QVc
t,t+τ ], and

λ
Q
t,t+τ = EQt

∫ t+τ
t λQu du/τ , i.e., the average risk neutral jump intensity.

The VS rate depends, of course, on the information available at time t. It also depends on

the time to maturity, τ . The latter dependence produces the term structure we are interested

in.

2.1. Preliminary Data Analysis

Our dataset consists of over the counter quotes on VS rates on the S&P500 index provided by

a major broker-dealer in New York City. The data are daily closing quotes on VS rates with

fixed time to maturities of 2, 3, 6, 12, and 24 months from January 4, 1996 to September 2,

2010, resulting in 3,624 observations for each maturity. Standard statistical tests do not detect

any day-of-the-week effect, so we use all available daily data.

We start by identifying some of the main features of the VS rates data. Figure 1 shows the

term structure of VS rates over time. VS rates appear to be mean-reverting, volatile, with spikes

and clustering during the major financial crises over the last 15 years, and historically high values

during the acute phase of the recent financial crisis in Fall 2008. While most term structures

are upward sloping (53% of our sample), they are often ∪-shape too (23% of our sample). The

remaining term structures are roughly split in downward sloping and ∩-shape term structures.3

3On some occasions, the term structure is ∼-shape, but the differences between, for e.g., the 2 and 3 months VS
rates are virtually zero and these term structures are nearly ∪-shape.
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The bottom and peak of the ∪- and ∩-shape term structures, respectively, can be anywhere

at 3 or 6 or 12 months to maturity VS rate. The slope of the term structure (measured as

the difference between the 24 and 2 months VS rates) shows a strong negative association with

the contemporaneous volatility level. Thus, in high volatility periods or turbulent times, the

short-end of the term structure (VS rates with 2 or 3 months to maturity) rises more than the

long-end, producing downward sloping term structures.

Tables 1 and 2 provide summary statistics of our data. For the sake of interpretability, we

follow market practice and report VS rates in volatility percentage units, i.e.,
√

VSt,t+τ × 100.

Various patterns emerge from these statistics. The mean level and first order autocorrelation of

swap rates are slightly but strictly increasing with time to maturity. The standard deviation,

skewness and kurtosis of swap rates are strictly decreasing with time to maturity. Ljung–Box

tests strongly reject the hypothesis of zero autocorrelations, while generally Dickey–Fuller tests

do not detect unit roots,4 except for longest maturities – it is well-known that the outcome of

standard unit root tests should be carefully interpreted with slowly decaying memory processes;

e.g., Schwert (1987). First order autocorrelations of swap rates range between 0.982 and 0.995,

confirming mean reversion in these series. As these coefficients increase with time to maturity,

the longer the maturity the higher the persistence of VS rates with mean half-life5 of shocks

between 38 and 138 days. Daily changes in VS rates are on average close to zero, non-normal,

and exhibit far less persistence than VS rates in levels.

Principal Component Analysis (PCA) shows that the first principal component explains

about 95.4% of the total variance of VS rates and can be interpreted as a level factor, while

the second principal component explains an additional 4.4% and can be interpreted as a slope

factor.6 This finding is somehow expected because PCA of several other term structures, such

as bond yields, produce qualitatively similar results. Less expected is that two factors explain

4Under the null hypothesis of unit root the Dickey–Fuller test statistic has zero expectation.
5The half-life H is defined as the time necessary to halve a unit shock and solves %H = 0.5, where % is the first
order autocorrelation coefficient.
6To save space, factor loadings are not reported, but are available from the authors upon request.
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nearly all the variance of VS rates, i.e., 99.8%. Repeating the PCA for various subsamples

produces little variation in the first two factors and explained total variance. Overall, PCA

suggests that at most two factors are driving VS rates. When compared to typical term struc-

tures of bond yields, the one of VS rates appears to be simpler, as a third principal component

capturing the curvature of the term structure is largely nonexistent here.

Table 1, Panel D, also shows summary statistics of ex-post realized variance of S&P500 index

returns for various time to maturities. Realized variances are substantially lower on average than

VS rates. Hence, shorting variance swaps is profitable on average. However, realized variances

are also more volatile, positively skewed and leptokurtic than VS rates, which highlights the

riskiness of shorting VS contracts. The large variability and in particular the positive skewness

of ex-post realized variances can induce large losses to the short side of the contract. The ex-

post variance risk premium, i.e., the difference between average realized variance and VS rate,

is negative and increasing with time to maturities. Thus, shorting long-term variance swaps is

on average more profitable than shorting short-term variance swaps.

2.2. Model-free Jump Component in Variance Swap Rates

We now provide a model-free assessment of the price jump component in VS rates by taking

advantage of recent theoretical advances.7 Under certain conditions, if the stock price process

is continuous, the VS payoff can be replicated by dynamic trading in futures contracts (or in

the underlying asset) and a static position in a continuum of European options with different

strikes and same maturity. The replication is model-free in the sense that the stock price can

follow the general Model (1), but with the restriction λPt = 0 and/or Js,Pt = 0.

If the stock price has a jump component, this replication no longer holds. This observation

makes it possible to assess whether VS rates embed a priced jump component and to quantify

7See Neuberger (1994), Dupire (1993), Carr and Madan (1998), Demeterfi et al. (1999), Britten-Jones and
Neuberger (2000), Jiang and Tian (2005), Jiang and Oomen (2008), Carr and Wu (2009), Carr and Lee (2010)
and Fuertes and Papanicolaou (2012).
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how large it is. In practice, of course, only a typically small number of options is available

to construct the replicating portfolio for a given horizon τ . Moreover, options are available

only for a few maturities that typically do not match the horizon τ . An interpolation across

maturities is therefore necessary. Jiang and Tian (2005) provide a detailed discussion of the

issues that introduce approximation errors. Our findings below should be interpreted keeping

in mind these interpolation errors.

Our procedure to detect the price jump component in VS rates is as follows. Model (1)

implies the following risk neutral dynamic for the futures price Ft

d logFt = −1

2
vt dt+

√
vtdW

Q
t + Js,Qt dNQ

t − E
Q
t [exp(Js)− 1]λQt dt.

The (squared) VIX index is obtained from an options portfolio that replicates a log contract8

VIXt,t+τ = −2

τ
EQt

[
log

Ft+τ
Ft

]
= −2

τ
EQt

∫ t+τ

t
d logFu = vQt,t+τ + 2EQt [exp(Js)− 1− Js]λQt,t+τ .

The difference between the VS rate in (4) and VIXt,t+τ is

VSt,t+τ −VIXt,t+τ = 2EQt

[
(Js)2

2
+ Js + 1− exp(Js)

]
λ
Q
t,t+τ . (5)

Up to a discretization error, VSt,t+τ − VIXt,t+τ is a model-free assessment of the price jump

term in the right hand side. If the price jump is zero, i.e., Js = 0 and/or the intensity λ
Q
t,t+τ = 0,

then VSt,t+τ − VIXt,t+τ is zero as well, and the VIX index is indeed a VS rate. If the price

jump is not zero, then VSt,t+τ − VIXt,t+τ is expected to be positive. The reason is that the

8The identity
Ft+τ
Ft
− 1− log

Ft+τ
Ft

=

∫ Ft

0

(K − Ft+τ )+

K2
dK +

∫ ∞
Ft

(Ft+τ −K)+

K2
dK

leads to computing the VIX index using forward prices of the out-of-the-money put and call options on the
S&P500 index with maturity t + τ . The VIX index is based on a calendar day counting convention and linear
interpolation of options whose maturities straddle 30 days (e.g., Carr and Wu (2006) provide a description of the
VIX calculation.)
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function in the square brackets in Equation (5) is downward sloping and passing through the

origin. If the jump distribution under Q is mainly concentrated on negative values, suggesting

that jump risk is priced, the expectation in Equation (5) tends to be positive.9 The average

risk neutral jump intensity λ
Q
t,t+τ is always nonnegative. Note that even if the jump risk is not

priced, i.e., the jump size distributions under P and Q are the same, VSt,t+τ − VIXt,t+τ could

still be nonzero.

Following the revised post-2003 VIX methodology, we calculate daily VIX-type indices,

VIXt,t+τ , for τ = 2, 3, and 6 months to maturity from January 4, 1996 to September 2, 2010

and compute the difference VSt,t+τ − VIXt,t+τ . SPX option prices are obtained from Option-

Metrics. Although it is straightforward to calculate VIX-type indices for longer maturities, the

interpolation of existing maturities straddling 12 and 24 months is likely to introduce significant

approximation errors.

Table 1, Panel B, shows summary statistics of calculated VIX-type indices. These indices

have the same term structure features as VS rates, qualitatively. However, on average, VS rates

are higher, more volatile, skewed, and leptokurtic than VIX-type indices for each maturity.

Moreover, the difference VSt,t+τ − VIXt,t+τ increases with time to maturity. Figure 2 shows

time series plots of VSt,t+τ − VIXt,t+τ for the various times to maturity. Such differences are

mostly positive, statistically significant, larger during market turmoils but sizeable also in quiet

times. A positive difference is not a crisis-only phenomenon, when jumps in stock price are

more likely to occur and investors may care more about jump risk. Despite the interpolation

errors mentioned above, we conclude that these findings are consistent with the presence of a

significant jump component embedded in VS rates.

A few reasons are conceivable for a non-zero difference of VSt,t+τ − VIXt,t+τ . The first

reason can be that, since European options on the S&P500 index (SPX) are more liquid than

9Up to a third order Taylor expansion, the expectation in Equation (5) is proportional to −EQt
[
(Js)3

]
. If price

jumps exhibit negative skewness under Q, then VSt,t+τ −VIXt,t+τ is again expected to be positive.
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VS contracts, a larger liquidity risk premium is embedded in VS rates than in SPX options.

Everything else equal, the higher the illiquidity of VS the higher the return of a long position

in VS should be, reflecting a liquidity risk premium. However, this would imply that the higher

the liquidity risk premium, the lower the VS rate. Thus, if anything, liquidity issues should

bias downward, an otherwise larger and positive difference VSt,t+τ −VIXt,t+τ .

A second reason for the non-zero difference in (5) can be that the SPX and VS are segmented

or disconnected markets. In that case, comparing asset prices from the two markets can easily

generate large gaps between VSt,t+τ and VIXt,t+τ . On one hand, there is anecdotal evidence

that VS contracts are typically hedged with SPX options and vice versa.10 Thus, it is unlikely

that the two markets are completely segmented. On the other hand, Bardgett et al. (2014)

provide evidence that VIX derivatives and SPX options carry conflicting information about

volatility dynamics, which can be interpreted as a form of segmentation between volatility and

option markets. A temporary disconnection between the two markets could explain the negative

difference VSt,t+τ −VIXt,t+τ observed on a few occasions in Fall 2008. For example if the SPX

market reacts more quickly than the VS market to negative news, option prices increase faster

than VS rates, inducing a negative difference.

While a positive difference in (5) is economically sensible, the remaining question is whether

quantitatively the difference documented in Table 1 is economically “fair.” To tackle this issue,

we computed the difference in (5) using the stochastic volatility Model (6)–(7), as well as other

models estimated in the literature. Although these models can produce a positive and time-

varying difference, they cannot match the observed large time-variation of VSt,t+τ − VIXt,t+τ .

Therefore, based on this metric, the positive difference appears to be excessively high, hinting

to some segmentation between the VS and SPX markets.

The CBOE methodology to select options for the VIX calculation is to include all out-of-the-

10The difficulties involved in carrying out such hedging strategies became prominent in October 2008 when
volatility reached historically high values (see Schultes (2008).)
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money options, far in the moneyness range, until two consecutive zero bid prices are found. The

rationale is to exclude illiquid options from the VIX calculation. Unfortunately, this procedure

implies that the actual number of options used in the VIX calculation can change substantially

from one day to the next, for example if options with zero bid price are suddenly traded and

deeper out-of-the-money options had non-zero bid prices. This may produce some instabilities

in the calculated VIX-type indices.11

To address this issue, we also calculated the VIX-type indices using the Carr and Wu

(2009) methodology.12 Table 1, Panel C, shows that the corresponding VIX-type indices are

on average rather constant across maturities and closer to the VS rates than VIX-type indices

based on the CBOE methodology. VIX-type indices based on the Carr–Wu methodology are

still less volatile and somewhat smaller than VS rates for the 6-month time to maturity (and

even more so for the unreported 12-month time to maturity). The corresponding time series

of VSt,t+τ − VIXt,t+τ , for τ = 2, 3, 6 months, are similar to the trajectories shown in Figure 2

and exhibit a significant time variation. All in all, based on the Carr–Wu methodology, the VS

market appears to generate VS rates which are roughly in line with option market’s expectations

of future quadratic variations, at least over short time horizons. There is however an important

difference between the CBOE and Carr–Wu methodologies, namely that only the former can

be associated to an actual trading strategy, as it only involves traded options. Therefore,

considering only tradable assets, the difference between VS and VIX-type indices appears to be

11Andersen et al. (2015) argue that the CBOE rule for selecting liquid options induces large instabilities in the
intraday calculation of the VIX index, especially during periods of market turmoil, when an accurate assessment
of volatility risk is most needed. We use the CBOE methodology to compute VIX-type indices on a daily basis.
These instabilities should be less severe than on an intraday basis.
12The Carr–Wu methodology is as follows. For a given day t and time to maturity τ , implied volatilities at different
moneyness levels are linearly interpolated to obtain 2,000 implied volatility points. The strike range is±8 standard
deviations from the current stock price. The standard deviation is approximated by the average implied volatility.
For moneyness below (above) the lowest (highest) available moneyness level in the market, the implied volatility
at the lowest (highest) strike price is used. Given the interpolated implied volatilities, the forward price at day t
of out-of-the-money options with different strikes K and time to maturity τ , Ot(K, τ), are computed using the
Black–Scholes formula. The VIX-type index is then given by a discretization of 2/τ

∫∞
0
Ot(K, τ)/K2 dK. This

procedure is repeated for each day t in our sample and for the two time to maturities available in the market,
say τ and τ , straddling the time to maturity τ (which may not be available in the market), i.e., τ ≤ τ ≤ τ , where
τ = 2, 3, 6 months. Finally, the linear interpolation across time to maturities of 2/τ

∫∞
0
Ot(K, τ)/K2 dK and

2/τ
∫∞
0
Ot(K, τ)/K2 dK gives the (squared) VIX-type index for the time to maturity τ .
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substantial.

2.3. A Parametric Stochastic Volatility Model

The limitations of the data available make it necessary to adopt a parametric structure, with

a specification informed by the model-free analysis above, in order to go further. So we now

parameterize the Model (1). Given the data analysis above, as well as the evidence in Gatheral

(2008) and Egloff et al. (2010) that two factors are both necessary and sufficient to accurately

capture the dynamics of the VS rates, we adopt under the objective probability measure P , the

following model for the ex-dividend stock price and its variance:

dSt/St− = µt dt+
√

(1− ρ2)vt dW
P
1t + ρ

√
vt dW

P
2t + (exp(Js,Pt )− 1) dNt − νPt dt

dvt = kPv (mt k
Q
v /k

P
v − vt) dt+ σv

√
vt dW

P
2t + Jv,Pt dNt (6)

dmt = kPm(θPm −mt) dt+ σm
√
mt dW

P
3t

where µt = r− δ+ γ1(1− ρ2)vt + γ2ρvt + (gP − gQ)λt, r is the risk free rate and δ the dividend

yield, both taken to be constant for simplicity only. The instantaneous correlation between

stock returns and spot variance changes, ρ, captures the so-called leverage effect. The base

Brownian increments, dWP
it , i = 1, 2, 3, are uncorrelated.13

The random price jump size, Js,Pt , is independent of the filtration generated by the Brownian

motions and jump process, and normally distributed with mean µPj and variance σ2
j . Hence,

gP = exp(µPj + σ2
j/2) − 1 is the Laplace transform of the random jump size. Similarly, gQ =

exp(µQj + σ2
j/2) − 1. The counting process Nt has the same jump intensity under the P and

Q measures, and it is given by λt = λ0 + λ1vt, where λ0 and λ1 are positive constants. This

specification allows for more jumps to occur during more volatile periods, with the intensity

bounded away from 0 by λ0. Bates (2006) provides time series evidence that the jump intensity

13Under this model specification, dW̃P
t in Model (1) becomes

√
(1− ρ2) dWP

1t + ρ dWP
2t in Model (6).
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is stochastic. Besides the empirical evidence on jumps in stock returns, the main motivation

for introducing such a jump component in stock returns is to account for the jump component

in VS rates, as suggested by our model-free analysis in Section 2.2.

The spot variance, vt, follows a two-factor model where mt controls its stochastic long-

run mean or central tendency. The speed of mean reversion is kPv under P , kQv under Q

and kPv = kQv − γ2σv, where γ2 is the risk premium for WP
2t ; Section 2.4 discusses the last

equality. The process mt controlling the stochastic long run mean follows its own stochastic

mean reverting process and mean reverts to a positive constant θPm, when the speed of mean

reversion kPm is positive. Typically, vt is fast mean reverting and volatile to capture sudden

movements in volatility, while mt is more persistent and less volatile to capture long term

movements in volatility. Several studies provide evidence that two factors are necessary to

describe variance dynamics.14 The square-root specification of the diffusion components, σv
√
vt

and σm
√
mt, is adopted to keep Model (6) close to commonly used models, e.g., Chernov and

Ghysels (2000), Pan (2002), Broadie et al. (2007, 2009), Egloff et al. (2010), and Todorov

(2010).

The random jump size of the spot variance, Jv,Pt , is independent of WP
t and Js,Pt , and

exponentially distributed with parameter µPv , i.e., EP [Jvt ] = µPv , ensuring that vt stays positive.

Thus, the variance jump Jv,Pt captures quick upward movements of vt. The Model (6) features

contemporaneous jumps both in returns and variance, that is the double-jump model introduced

by Duffie et al. (2000). Eraker et al. (2003) fit models with contemporaneous and independent

jumps in returns and variance to S&P500 data. They find that the two models perform simi-

larly, but the model with contemporaneous jumps is estimated more precisely. Eraker (2004),

Broadie et al. (2007), Chernov et al. (2003), and Todorov (2010) provide further evidence for

contemporaneous jumps in returns and variance.

14These studies include Andersen et al. (2002), Alizadeh et al. (2002), Adrian and Rosenberg (2008), Engle and
Rangel (2008), Christoffersen et al. (2009) and Corradi et al. (2013).
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Model (6) covers existing stochastic volatility models along most dimensions. For example,

none of the studies cited above allow at the same time for stochastic long run mean, stochastic

jump intensity and jumps in returns and variance. Bakshi et al. (1997), Bates (2000, 2006),

Pan (2002), Eraker et al. (2003), Eraker (2004), Broadie et al. (2007, 2009) set mt to a constant

positive value. Almost all studies assume either constant jump intensities (e.g., Eraker et al.

(2003) and Broadie et al. (2007)) or jumps in returns but not in variance (e.g., Pan (2002) and

Broadie et al. (2009)).

Under Q, the ex-dividend price process evolves as

dSt/St− = (r − δ) dt+
√

(1− ρ2)vt dW
Q
1t + ρ

√
vt dW

Q
2t + (exp(Js,Qt )− 1) dNt − νQt dt

dvt = kQv (mt − vt) dt+ σv
√
vt dW

Q
2t + Jv,Qt dNt (7)

dmt = kQm(θQm −mt) dt+ σm
√
mt dW

Q
3t

where the Brownian motions WQ
i , i = 1, 2, 3, price jump size Js,Q, counting jump process N ,

its compensator νQ, and variance jump size Jv,Q are governed by the measure Q.

Given the stochastic volatility model above, the VS rate is available in closed form. We

first calculate vQt,t+τ in Equation (4). Interchanging expectation and integration (justified by

Tonelli’s theorem)

vQt,t+τ =
1

τ

∫ t+τ

t
EQt [vu] du = (1− φQv (τ)− φQm(τ))θQm + φQv (τ)vt + φQm(τ)m̃t (8)

where m̃t = (kQv mt + µQv λ0)/k̃Qv , k̃Qv = kQv − µQv λ1, and

φQv (τ) =
(

1− exp(−k̃Qv τ)
)
/(k̃Qv τ)

φQm(τ) =
(

1 + exp(−k̃Qv τ)kQm/(k̃
Q
v − kQm)− exp(−kQmτ)k̃Qv /(k̃

Q
v − kQm)

)
/(kQmτ).
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Equation (8) is obtained using the risk neutral jump-compensated dynamic of vt.
15 Finally,

using independence among Js,Q, Jv,Q and N

VSt,t+τ = vQt,t+τ + EQt [(Js)2]λ
Q
t,t+τ (9)

where EQt [(Js)2] = EQ[(Js)2] = (µQj )2 + σ2
j , as the return jump size is time-homogeneous, and

λ
Q
t,t+τ = λ0+λ1v

Q
t,t+τ . Note that if the variance jump component was absent, i.e., Jv,Qt = 0, then

µQv = 0 and vQt,t+τ had the same analytical expression as in (8) with m̃t = mt and k̃Qv = kQv .

Given the linearity of the VS payoff in the spot variance, only the drift of vt enters the

VS rate. The martingale part of vt (diffusion and jump compensated parts) affects only the

dynamic of VSt,t+τ . The Q-expectation of the stochastic jump intensity provides a time-varying

contribution to VSt,t+τ , given by λ
Q
t,t+τ , which depends on the time to maturity of the contract.

2.4. Market Prices of Risk

As in Pan (2002), Aı̈t-Sahalia and Kimmel (2010), and others, we specify the market price of

risks for the Brownian motions as

Λ′t = [γ1

√
(1− ρ2)vt, γ2

√
vt, γ3

√
mt] (10)

where ′ denotes transposition. Thus, P and Q parameters controlling vt and mt are related as

follows

kPv = kQv − γ2σv, kPm = kQm − γ3σm, θPm = θQm k
Q
m/k

P
m.

15The risk neutral jump-compensated dynamic is dvt = kQv (mt − vt) dt + µQv (λ0 + λ1 vt)dt + dMQ
t , where the

Q-martingale increment dMQ
t = σv

√
vt dW

Q
2t + Jv,Qt dNt − µQv (λ0 + λ1 vt)dt. Rewriting the dynamic as dvt =

k̃Qv (m̃t−vt) dt+dMQ
t gives the expressions for k̃Qv and m̃t. Applying Itô’s Lemma to ek̃

Q
v tvt, integrating between

time t and s, and rearranging terms, as usual, give

vs = vte
−k̃Qv (s−t) +

∫ s

t

e−k̃
Q
v (s−u)k̃Qv m̃u du+

∫ s

t

e−k̃
Q
v (s−u)dMQ

u .

Taking EQt , the last term above vanishes. The expectation EQt [m̃u] can be computed following similar steps.
Calculating all integrals gives Equation (8).
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More flexible specifications of the market price of risks for the Brownian motions have been

suggested (e.g., Cheridito et al. (2007).) In the present application, there does not appear to be

a strong need for an extension of (10), given the tradeoffs between the benefits of a more richly

parameterized model and the costs involved in its estimation and out-of-sample performance.

The price jump size risk premium is (gP − gQ) = exp(µPj + σ2
j/2) − exp(µQj + σ2

j/2). The

variance of the price jump size is the same under P and Q, implying that the jump distribution

has the same shape but potentially different location under P and Q. As, e.g., in Pan (2002),

Eraker (2004), and Broadie et al. (2007), we assume that the jump intensity is the same under

both measures. The main motivation for this assumption is the well-known limited ability to

estimate jump components in stock returns and the corresponding risk premium using daily

data. Thus, all price jump risk premium is absorbed by the price jump size risk premium,

(gP −gQ). The total price jump risk premium is time-varying and given by (gP −gQ)(λ0 +λ1vt).

Similarly, the variance jump premium is (µPv − µ
Q
v )(λ0 + λ1vt).

The jump component makes the market incomplete with respect to the risk free bank ac-

count, the stock and any finite number of derivatives. Hence, the state price density is not

unique. The specification we adopt is

dQ

dP

∣∣∣∣
Ft

= exp

(
−
∫ t

0
Λ′s dW

P
s −

1

2

∫ t

0
Λ′sΛs ds

)
Nt∏
u=1

exp

(
(µPj )2 − (µQj )2

2σ2
j

+
µQj − µPj

σ2
j

Js,Pu +
µQv − µPv
µPv µ

Q
v

Jv,Pu

)
. (11)

Appendix A shows that Equation (11) is a valid state price density. The first exponential

function is the usual Girsanov change of measure of the Brownian motions. The remaining part

is the change of measure for the jump component in the stock price and variance.

Equation (11) shows that, in the economy described by this model, price and variance jumps

carry a risk premium because when a jump occurs the state price density jumps as well. Bad

states of the economy, in which marginal utility is high, can be reached when a negative price
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jump and/or a positive variance jump occur. When the risk neutral mean of the price jump size

is lower than the objective mean, i.e., µQj < µPj , and a negative price jump occurs (Js,P < 0),

the state price density jumps up giving high prices to (Arrow–Debreu) securities with positive

payoffs in these bad states of the economy, namely when the stock price falls. Similarly, when

the risk neutral mean of the variance jump size is larger than the objective mean, i.e., µQv > µPv ,

and a positive variance jump occurs (Jv,P > 0), the state price density jumps up when these

bad states of the economy occur, namely when volatility is high. In our empirical estimates, we

do find that µQj < µPj and µQv > µPv .

3. Likelihood-Based Estimation Method

Model (6)–(7) is estimated using the general approach in Aı̈t-Sahalia (2002, 2008). The pro-

cedure we employ then combines time series information on the S&P500 returns and cross

sectional information on the term structures of VS rates in the same spirit as in other derivative

pricing contexts, e.g., Chernov and Ghysels (2000) and Pan (2002). Hence, P and Q parame-

ters, including risk premia, are estimated jointly making the inference procedure theoretically

sound.

Let X ′t = [log(St), Y
′
t ] denote the state vector, where Yt = [vt,mt]

′. The spot variance and

its stochastic long run mean, collected in Yt, are not observed and will be extracted from actual

VS rates. The procedure for evaluating the likelihood function consists of four steps. First, we

extract the unobserved state vector Yt from a set of benchmark VS rates, assumed to be observed

without error. Second, we evaluate the joint likelihood of the stock returns and extracted time

series of latent states, using an approximation to the likelihood function. Third, we multiply

this joint likelihood by a Jacobian determinant to compute the likelihood of observed data,

namely index returns and term structures of VS rates. Finally, for the remaining VS rates

assumed to be observed with error, we calculate the likelihood of the observation errors induced

by the extracted state variables. The product of the two likelihoods gives the joint likelihood
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of the term structures of all VS rates and index returns. We then maximize the joint likelihood

over the parameter vector to produce the estimator.

The assumption that a set of benchmark VS rates are observed without error is convenient

and standard in the term structure literature because makes the filtering of the latent variables

Yt unnecessary; see, e.g., Pearson and Sun (1994), Aı̈t-Sahalia and Kimmel (2010), and Wu

(2011). Alternatively, one could assume that all VS rates are observed with errors, which would

require filtering of the latent variables Yt, for example using Markov Chain Monte Carlo methods

as in Eraker (2004).

We found empirically that estimation results are quite insensitive to which VS rates are

assumed to be observed with and without errors. This is expected because eventually all VS

rates are used in the estimation procedure.

3.1. Extracting State Variables from Variance Swap Rates

Model (6)–(7) implies that the VS rates are affine in the unobserved state variables. This

feature suggests the following procedure to extract latent states and motivates our likelihood-

based approach.

The unobserved part in the state vector, Yt, is ` dimensional, where ` = 2 in Model (6)–(7).

As the method can be applied for ` ≥ 1, we describe the procedure for a generic `. At each

day t, ` VS rates are observed without error, with times to maturities τ1, . . . , τ `. The state

vector Yt is exactly identified by the ` VS rates, VSt,t+τ1 , . . . ,VSt,t+τ` . These VS rates jointly

follow a Markov process and satisfy


VSt,t+τ1

...

VSt,t+τ`

 =


a(τ1; Θ)

...

a(τ `; Θ)

+


b(τ1; Θ)′

...

b(τ `; Θ)′

Yt (12)

where Θ denotes the model parameters. Rearranging Equation (9) gives VSt,t+τ = a(τ ; Θ) +
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b(τ ; Θ)′[vt,mt]
′, where

a(τ ; Θ) = EQ[J2]λ0 + (1 + λ1E
Q[J2])

(
(1− φQv (τ)− φQm(τ))θQm + φQm(τ)µQv λ0/k̃

Q
v

)
b(τ ; Θ)′ = (1 + λ1E

Q[J2]) [φQv (τ), φQm(τ)kQv /k̃
Q
v ].

Equation (12) in vector form reads VSt,· = a(Θ) + b(Θ)Yt, with obvious notation. The current

value of the unobserved state vector Yt can easily be found by solving the equation for Yt, i.e.,

Yt = b(Θ)−1[VSt,· − a(Θ)]. The affine relation between VS rates and latent variables makes

recovering the latter numerically costless, especially compared to recovering latent variables

from standard call and put options as, for e.g., in Pan (2002).

3.2. Likelihood of Stock Returns and Variance Swap Rates Observed Without Error

The extracted time series values of the unobserved state vector Yt at dates t0, t1, . . . , tn allows

to infer the dynamics of the state variables X ′t = [log(St), Y
′
t ] under the objective probabil-

ity P . Since the relationship between the unobserved state vector Yt and VS rates is affine,

the transition density of VS rates can be derived from the transition density of Yt by a change

of variables and multiplication by a Jacobian determinant which depends, in this setting, on

model parameters but not on the state vector.

Let pX(x∆|x0; Θ) denote the transition density of the state vector Xt under the measure P ,

i.e., the conditional density ofXt+∆ = x∆, givenXt = x0. LetAt = [log(St),VSt,t+τ1 , . . . ,VSt,t+τ` ]
′

be the vector of observed asset prices and pA(a∆|a0; Θ) the corresponding transition density.

Observed asset prices, At, are given by an affine transformation of Xt

At =

 log(St)

VSt,·

 =

 log(St)

a(Θ) + b(Θ)Yt

 =

 0

a(Θ)

+

 1 0′

0 b(Θ)

Xt

and rewritten in matrix form reads At = ã(Θ) + b̃(Θ)Xt, with obvious notation. The Jacobian
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term of the transformation from Xt to At is therefore

det

∣∣∣∣∂At∂X ′t

∣∣∣∣ = det
∣∣∣b̃(Θ)

∣∣∣ = det |b(Θ)| .

In Model (6)–(7), det |b(Θ)| = |(1 +λ1E
Q[J2])2

(
φQv (τ1)φQm(τ2)− φQv (τ2)φQm(τ1)

)
kQv /k̃

Q
v |. Since

Xt = b̃(Θ)−1[At − ã(Θ)],

pA(A∆|A0; Θ) = det
∣∣b(Θ)−1

∣∣ pX(b̃(Θ)−1[A∆ − ã(Θ)]|b̃(Θ)−1[A0 − ã(Θ)]; Θ). (13)

As the vector of asset prices is Markovian, applying Bayes’ Rule, the log-likelihood function of

the asset price vector At sampled at dates t0, t1, . . . , tn has the simple form

ln(Θ) =
n∑
i=1

lA(Ati |Ati−1 ; Θ) (14)

where lA = ln pA. As usual in likelihood estimation, we discard the unconditional distribution

of the first observation since it is asymptotically irrelevant.

In our applications below, models are estimated using daily data, hence the sampling process

is deterministic and ti− ti−1 = ∆ = 1/252; see Aı̈t-Sahalia and Mykland (2003) for a treatment

of maximum likelihood estimation in the case of randomly spaced sampling times.

3.3. Likelihood of Stock Returns and All Variance Swap Rates

From the coefficients a(τ ; Θ) and b(τ ; Θ) and the values of the state vector Xt found in the first

step, we can calculate the implied values of the VS rates which are assumed to be observed with
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error and whose time to maturities are denoted by τ `+1, . . . , τ `+h


VSt,t+τ`+1

...

VSt,t+τ`+h

 =


a(τ `+1; Θ)

...

a(τ `+h; Θ)

+


b(τ `+1; Θ)′

...

b(τ `+h; Θ)′

Yt.

The observation errors, denoted by ε(t, τ `+i), i = 1, . . . , h, are the differences between such

model-based implied VS rates and actual VS rates from the data. By assumption, these errors

are Gaussian with zero mean and constant variance, independent of the state process and across

time, but possibly correlated across maturities.16 The joint likelihood of the observation errors

can be calculated from the h dimensional Gaussian density function. Since the observation

errors are independent of the state variable process, the joint likelihood of stock returns and

all observed VS rates is simply the product of the likelihood of stock returns and VS rates

observed without error, multiplied by the likelihood of the observation errors. Equivalently, the

two log-likelihoods can simply be added to obtain the joint log-likelihood of stock returns and

all VS rates.

3.4. Likelihood Approximation

Since the state vector X is a continuous-time multivariate jump diffusion process, its transition

density is unknown. Since jumps are by nature rare events in a model with finite jump activity,

it is unlikely that more than one jump occurs on a single day ∆. This observation motivates

the following Bayes’ approximation of pX

pX(x∆|x0) = pX(x∆|x0, N∆ = 0) Pr(N∆ = 0) + pX(x∆|x0, N∆ = 1) Pr(N∆ = 1) + o(∆)

where Pr(N∆ = j) is the probability that j jumps occur at day ∆, omitting the dependence on

16The estimated variances of these errors (reported in Table 3) are very tiny and never induced any sizable
probability of negative VS rates.
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the parameter Θ for brevity. An extension of the method due to Yu (2007) for jump-diffusion

models can provide higher order terms if necessary.

In Model (6)–(7), the largest contribution to the transition density of X (hence to the

likelihood) comes from the conditional density that no jump occurs at day ∆. The reason is that

the probability of such an event, Pr(N∆ = 0), is typically large and of the order 1−(λ0+λ1v0) ∆.

The contribution of the second term is only of the order (λ0 + λ1v0) ∆. As ∆ is one day in

our setting, the contribution of higher order terms appears to be quite modest. The main

advantage of this approximation is that the leading term, pX(x∆|x0, N∆ = 0), can be accurately

computed using the likelihood expansion method. The expansion for the transition density of

X conditioning on no jump has the form of a Taylor series in ∆ at order K, with each coefficient

C(k) in a Taylor series in (x − x0) at order jk = 2(K − k). Denoting C(jk,k) such expansions,

the transition density expansion is

p̃(K)(x|x0; Θ) = ∆−(`+1)/2 exp

[
−C

(j−1,−1)(x|x0; Θ)

∆

]
K∑
k=0

C(jk,k)(x|x0; θ)
∆k

k!
. (15)

Coefficients C(jk,k) are computed by forcing the Equation (15) to satisfy, to order ∆K , the for-

ward and backward Kolmogorov equations. A key feature of the method is that the coefficients

are obtained in closed form by solving a system of linear equations. This holds true for arbi-

trary specifications of the dynamics of the state vector X. Moreover, the coefficients need to be

computed only once and not at each iteration of the likelihood search. Equation (15) provides

a very accurate approximation of the transition density of X already when K = 2; e.g., Jensen

and Poulsen (2002). In our empirical application below, we use expansions at order K = 2.

4. Fitting Variance Swap Rates

4.1. In-Sample Estimation

Table 3 reports parameter estimates for Model (6)–(7), based on the in-sample period January
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4, 1996 to April 2, 2007. The spot variance is relatively fast mean reverting as kPv implies a half-

life17 of 33 days. Its stochastic long run mean is slowly mean reverting with a half-life of about

1.5 years. The instantaneous volatility of vt is about twice that of mt. The correlation between

stock returns and variance changes, ρ, is −69%, confirming the so-called leverage effect. The

long-run average volatility,
√
θPm, is 20%, in line with the summary statistics in Table 1. Both

γ2 and γ3 are negative, implying negative instantaneous variance risk premia. The correlation

parameter for the VS pricing errors, ρe, is slightly negative suggesting that the model does not

produce any systematic pricing error.18

The expected jump size is negative under the objective probability measure, µPj , and more

negative under the risk neutral measure, µQj , which induces a positive price jump risk premium.

The estimate of the jump intensity indicates 2.5 jumps per year on average (i.e., λ0 +λ1(kQv θ
P
m+

µPv λ0)/(κPv − µPv λ1)), which is in line with previous estimates reported in the literature.

Table 3 also reports estimates of three nested models: (i) a two-factor model with price jumps

only (labeled SV2F-PJ) with µPv = µQv = 0, (ii) a two-factor model with no jump component

(labeled SV2F) with the additional restriction λ0 = λ1 = 0, and (iii) the Heston model (labeled

SV1F) with the additional restriction mt = θPm for all t. Imposing each additional restriction

significantly deteriorates the fitting of VS rates and S&P500 returns, according to likelihood

ratio tests. Thus, Model (6)–(7) outperforms all nested models.

4.2. Out-of-Sample Robustness Checks

We conduct all subsequent analyses using two subsamples. Data from January 4, 1996 to April

2, 2007 are used for in-sample analysis, as Model (6)–(7) is estimated using these data. The

remaining sample data, from April 3, 2007 to September 2, 2010, which include the 2007–2009

financial crisis, are used for out-of-sample analysis and robustness checks.

17The half-life is defined as the time necessary to halve a unit shock and is given by − log(0.5)/kPv × 252 in
number of days.
18The determinant of the 3 × 3 error term correlation matrix is 2ρ3e − 3ρ2e + 1, which is strictly positive when
ρe > −0.5.
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Table 4 shows the pricing errors of Model (6)–(7) when fitting VS rates, for the in- and out-

of-sample periods. Pricing errors of the Heston model are also reported for comparison.19 The

pricing error is defined as the model-based VS rate minus the observed VS rate. Model (6)–(7)

fits VS rates well both in- and out-of-sample and significantly outperforms the Heston model.

For example, its root mean square error is 6 times smaller than that of the Heston model when

fitting 24-month to maturity VS rates. The small pricing errors imply that Model (6)–(7)

captures the empirical features of VS rates well.

Below, we explore the ability of the model, fitted in-sample, to explain the in-sample realized

risk premia and predict the out-of-sample risk premia.

5. Risk Premia: Equity Premium and Volatility Premium

One advantage of modeling the underlying asset returns jointly with the VS rates is that the

resulting model produces estimates of risk premia for both sets of variables, including in particu-

lar estimates of the classical equity premium. We distinguish between the spot or instantaneous

risk premia at each instant t and the integrated ones, defined over each horizon τ .

What have we learned about risk premia that we did not know before? The term structure of

integrated equity and variance risk premia, which is largely unexplored in the finance literature,

exhibits significant time variation throughout our sample period and large swings during crisis

periods. Integrated equity risk premia are countercyclical but the slope of the term structure

is procyclical. This indicates that after a market drop investors demand a large risk premium

to hold risky stocks, but the risk premium largely depends and strongly decreases with the

holding horizon. Integrated variance risk premia become more negative as the horizon increases,

especially during turbulent times. This means that, to hedge volatility risk, investors are ready

to pay large premia (VS rates are high) and to take large expected losses (variance risk premia

are negative and large). Market crashes impact and propagate differently throughout the term

19Pricing errors of the two other models in Table 3 are in most cases somewhere in between the pricing errors of
the Heston model and Model (6)–(7), and are not reported.

29



structure of equity and variance risk premia, with the short-end being more affected, and the

long-end exhibiting more persistency. Finally, the two term structures respond quite differently

to various economic indicators, such as credit spreads, VIX index, and slopes of the interest

rate term structure.

5.1. Spot Risk Premia

Model (6)–(7) features four main instantaneous or spot risk premia: A Diffusive Risk Premium

(DRP), a Jump Risk Premium (JRP), a Variance Risk Premium (VRP), and a Long-run Mean

Risk Premium (LRMRP) which are defined as

DRPt = (γ1(1− ρ2) + γ2ρ)vt, JRPt = (gP − gQ)(λ0 + λ1vt)

VRPt = γ2σvvt, LRMRPt = γ3σmmt.

DRP is the remuneration for diffusive-type risk only (due to the Brownian motions driv-

ing the stock price). JRP is the remuneration for the jump component in stock price. The

instantaneous Equity Risk Premium (ERP) is the sum of the two, i.e., ERPt = DRPt + JRPt.

The mean growth rates of vt and mt are different under the probability measures P and Q,

and such differences are given by VRPt and LRMRPt, respectively. As γ2 and γ3 are estimated

to be negative (Table 3), VRP and LRMRP are both negative, and on average vt and mt are

higher under Q than under P . The negative sign of the variance risk premium is not abnormal.

The risk premium for return risk is positive, because investors require a higher rate of return as

compensation for return risk. On the other hand, investors require a lower level of variance as

compensation for variance risk, hence the negative variance risk premium. Risk-averse investors

dislike both higher return variance, and higher variance of the return variance.

Table 5 reports the estimated risk premia. During our in-sample period, January 1996 to

April 2007, the average ERP is 7%. Notably, approximately 1/3 of the ERP is due to the jump

risk premium, which thus accounts for a large fraction of the equity risk premium. Jump prices

are rare events (2.5 jumps per year on average), but arguably jump risk is important as it cannot
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be hedged with any finite number of securities. The average VRP is also substantial and around

−8%, while the LRMRP is much lower and around −0.8%. During the out-of-sample period,

April 2007 to September 2010, all risk premia almost doubled reflecting the unprecedented

turmoil in financial markets around the Lehman Brothers’ bankruptcy.

Unreported results show that VRP estimated using the Heston model is only −1.7%, but

it increases to −4% for all other nested models with reacher variance dynamics. Heston and

two-factor models without jump component imply an ERP of 7%, which is roughly the sum of

the DRP and JRP based on Model (6)–(7). This suggests that, in nested models without jump

component, all ERP is artificially absorbed by DRP.

As mentioned in Section 2.4, Model (6)–(7) also features a variance jump risk premium,

(µPv − µ
Q
v )(λ0 + λ1vt), which is estimated to be negative but small, as estimates of µPv and µQv

are rather close, and hence it is not reported. This means that setting µPv = µQv as, e.g., in

Eraker et al. (2003) and Eraker (2004), does not materially change estimates of risk premia

based on Model (6)–(7).

5.2. Integrated Risk Premia

5.2.1 Integrated Equity Risk Premium

We define the annualized integrated Equity Risk Premium (IERP) as

IERPt,t+τ = EPt [St+τ/St]/τ − EQt [St+τ/St]/τ (16)

which is the ex-ante expected (or forward looking) excess return from buying and holding the

S&P500 index from t to t + τ .20 Extensive research has been devoted to study levels and

dynamics of the IERP for a single maturity (often one year, using ex-post measures of the

IERP), in particular investigating the so-called equity premium puzzle. Surprisingly, much less

20The IERP is the familiar equity risk premium. We use the wording “integrated” to distinguish it from the
instantaneous equity risk premium discussed in the previous section.
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attention has been devoted to study the term structure of the IERP, which is the focus of this

section.

The IERP can be decomposed in the continuous and jump part, i.e., IERPt,t+τ = IERPct,t+τ+

IERPjt,t+τ , where the continuous part IERPct,t+τ is the IERP when the jump component is

absent, i.e., the jump intensity λt = 0 in the drift µt of Model (6), and the jump part

IERPjt,t+τ = IERPt,t+τ − IERPct,t+τ . This decomposition allows us to quantify how the var-

ious risks contribute to the IERP and the corresponding term structure of risk premia.

An advantage of studying the term structure of IERP in a parametric model is that risk

premia and their decompositions are exact. Model-free approaches typically involve options,

which in turn require interpolations or moving average schemes to reduce the impact on risk

premia of time-varying maturities; see Bollerslev and Todorov (2011) for a discussion of this

point.

The time-t conditional expectations in (16) can be computed using the transform analysis

in Duffie et al. (2000), i.e., solving a system of nonlinear ordinary differential equations derived

in Appendix B. The IERP is exponentially affine in the state variables, i.e., IERPt,t+τ =

exp(A(τ) + B(τ)vt + C(τ)mt). Our model estimates in Table 3 imply that A(τ), B(τ) and

C(τ) are positive coefficients. Therefore, in quiet times, when the spot variance vt and its

stochastic long run mean mt are low, IERPs are low as well. When asset prices fall and vt

and/or mt increase, IERPs increase as well, reflecting distressed asset prices. Thus, the IERP

is countercyclical.

To compute the IERP, we use the daily term structure of interest rates, downloaded from

OptionMetrics and linearly interpolated to match the VS time to maturities, rather than a

constant interest rate as in the analysis above. Table 6 reports mean and standard deviation of

the integrated equity risk premium over 2-, 6-, 12- and 24-month horizons.21 From January 1996

to April 2007, our in-sample period, IERPs are around 6.5% and the term structure is nearly flat.

21As the IERP for the 2- and 3-month horizons are rather close, the latter is not reported.
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From April 2007 to September 2010, our out-of-sample period, IERPs are significantly larger

and about 10%, reflecting distressed asset prices around the Lehman Brothers’ bankruptcy. In

this period, the term structure of IERPs is downward sloping on average.

Figure 3 shows the evolution of the IERP over time, along with the S&P500 index. The

entire term structure of the IERP exhibits significant variation over time, with the short-end

being more volatile than the long-end. When the S&P500 steadily increased, such as in 2005–7,

the 2-month IERP dropped at the lowest level, around 4%, during our sample period. The term

structure was slightly upward sloping with the 24-month IERP at almost 6%. At the end of

2008 and beginning of 2009, after Lehman Brothers collapsed, the term structure of the IERP

became significantly downward sloping with the 2-month IERP reaching the highest values in

decades. This implies that at the peak of the crisis, investors required equity risk premia as large

as 50% to invest in the S&P500 index over short horizons like 2 months, and required less than

half these risk premia for investing over long horizons like 2 years.22 On November 20, 2008,

the annualized 2-month IERP was as high as 54%, and between October and December 2008,

was above 30% on various occasions, somehow mirroring the fall of the index. Indeed, from

mid-September to mid-November 2008, the S&P500 index dropped from 1,200 to 750, loosing

37% of its value. On March 9, 2009, it reached the lowest historical value in more than a decade,

at 677, and then recovered 35% of its value within the next two months. Such large swings in

the S&P500 index suggest that the large model-based estimates of the IERP are quite sensible.

Recently, Martin (2013) provides a model-free lower bound on the equity premium that is by

construction lower than, but closely mimics, the equity risk premia depicted in Figure 3.23

Table 6 shows that the jump component, IERPjt,t+τ , contributes significantly to the IERP

22It’s now obvious in retrospect that Spring 2009 was a great time to go long equities, on the basis of the large
equity premium at that point in time, but note that this is here an ex-ante prediction of the model (in fact, made
on the basis of the in-sample data only).
23van Binsbergen et al. (2013) provide a related study of the term structure of “equity yields,” in analogy to
bond yields, extracted from dividends derivatives. The term structure of forward equity yields on the S&P500
exhibits similar dynamics as the term structure of equity risk premia depicted in Figure 3. Lettau and Wachter
(2007, 2011) provide related studies on the term structure of equity returns, focusing on value and growth stocks.
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and its term structure. For example, during our in-sample period, the one-year IERP is 6.3%

and 2.5% is due to jump risk. Using a model-free approach, Bollerslev and Todorov (2011) also

find that a large fraction of the equity risk premium, around 5% in their study, is due to (large)

jump risk, for a short time horizon τ .24

To understand which economic factors may drive the term structure of the IERP we con-

duct regression analysis. We regress the IERP, for each horizon τ , on variables proxying for

equity, option, corporate and Treasury bond market conditions, namely daily S&P500 returns,

VIX index, the difference between Moody’s BAA and AAA corporate bond yields (CScorp, an

indicator of credit riskiness within the corporate sector), the difference between Moody’s AAA

corporate bond yield and 3-month Treasury securities (CSgov, an indicator of credit spread

between corporate and Treasury sectors), the difference between the yields on 2-year and 3-

month Treasury securities (TermS, the short term slope of the interest rate term structure), the

difference between the yields on 10-year and 2-year Treasury securities (TermL, the long term

slope of the interest rate term structure). Figure 4 shows the time series plots of the latter four

variables.

Panel A in Table 7 summarizes the regression results. Interestingly, these variables have

nearly a monotonic (decreasing or increasing) impact on the term structure of IERP, as measured

by the slope coefficients. For example, daily S&P500 returns have progressively less negative

impact on the IERP as the horizon increases, with the impact becoming statistically insignificant

beyond the 3-month horizon. In other words, a negative S&P500 return does increase the IERP

but propagates differently throughout the term structure of IERP, with the short-end being more

sensitive than the long-end to the shock. An increase of the VIX index has progressively less

positive impact on the IERP as the time horizon increases, but the impact remains statistically

and economically significant also for the 2-year horizon. CScorp has a positive and decreasing

24Bollerslev and Todorov (2011) rely on intraday S&P500 data and SPX options to study the equity risk premium
over a single time horizon τ , with median of 14 days.
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impact on the IERP, amplifying the countercyclical variation of the IERP, especially in the

short-end of the term structure. This suggests that strains in the corporate sector impact the

IERP but only over short horizons of a few months.

The slope coefficients of other variables change sign throughout the term structure of IERP,

for example from positive to negative for TermL, the long term slope of the yield curve. During

the market drop in Fall 2008, TermL increased (Figure 4). Consequently, the positive slope

coefficients for short term IERP and negative slope coefficients for long term IERP amplified

the downward slope of the IERP term structure during those turbulent times. To the extent that

this variable reflects “flight-to-liquidity” phenomena during the crisis (i.e., investors rebalancing

their portfolios from equities to treasuries), VS market participants appear to regard these

phenomena as transient and to anticipate an overall portfolio rebalancing (from treasuries to

equities) when the crisis will be over.

All in all, economic indicators appear to have a rich impact on equity risk premia over

different horizons. This impact can be uncovered only by studying the term structure of the

IERP.

5.2.2 Integrated Variance Risk Premium

We define the annualized integrated variance risk premium (IVRP) as IVRPt,t+τ = EPt [QVt,t+τ ]−

EQt [QVt,t+τ ], which represents the ex-ante expected profit to the long side of a VS contract,

when the position is entered at time t and held till maturity t + τ . Table 6 reports sum-

mary statistics of the IVRP and Figure 5 shows the dynamic over time. The average IVRP

for 24-month maturity is −2.9% during our out-of-sample period and can be as high as −5%

in variance units. These are large risk premia compared to an average spot variance of 4% in

variance units. While Model (6)–(7) is flexible enough to generate positive and negative IVRP,

estimated ex-ante IVRP is always negative. This indicates that investors perceive volatility

increases as unfavorable events and are willing to take large expected losses to buy protection
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against such volatility increases.

The longer the time to maturity the higher in absolute value the annualized IVRP. Thus,

the term structure of IVRP is on average downward sloping, i.e., long-term VS contracts carry

more risk premium for stochastic variance than short-term contracts. In fact, Filipović et al.

(2015) show that an optimal investment strategy is to go short in long-term VS (to earn the

risk premium) and to go long in short-term VS (to hedge volatility risk).25

Similarly to the IERP, we conduct regression analysis to understand which economic factors

may drive the term structure of the IVRP. Panel B in Table 7 summarizes the regression

results. A negative S&P500 return induces a more negative IVRP, especially for the short-end

of the term structure, and the effect becomes statistically insignificant only beyond a six-month

horizon. An increase of the VIX index also induces a more negative IVRP but its impact is quite

uniform, statistically and economically significant, throughout the IVRP term structure. Thus,

despite being a 30-day volatility index, the VIX behaves more like a “level factor” than a short

term factor for variance risk premia. CScorp has a negative and decreasing impact on the IVRP,

amplifying the procyclical variation of the IVRP. Thus destressed conditions in the corporate

sector appear to command a variance risk premium, but mainly over short horizons. The slope

coefficients of other variables change sign throughout the IVRP term structure, and thus impact

the slope of the term structure. For example the regression coefficients of TermL range from

negative to positive as the time horizon increases. An increase of the slope of the yield curve

during Fall 2008 tends to induce an upward sloping term structure of the IVRP. However, in

contrast to its impact on the IERP term structure, this effect is not very pronounced, and the

IVRP term structure remains essentially downward sloping.

As the quadratic variation can be naturally decomposed in the continuous, QVc
t,t+τ , and

25Egloff et al. (2010) also study optimal investment in VS but they reach the opposite conclusion for the optimal
allocation. This can be explained by the different stochastic volatility models, investment strategies and market
price of risk specifications used in the two studies.
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discontinuous, QVj
t,t+τ , part (see Equation (3)), the IVRP can also be decomposed as

IVRPt,t+τ = EPt [QVt,t+τ ]− EQt [QVt,t+τ ]

= (EPt [QVc
t,t+τ ]− EQt [QVc

t,t+τ ]) + (EPt [QVj
t,t+τ ]− EQt [QVj

t,t+τ ])

= IVRPct,t+τ + IVRPjt,t+τ .

We now investigate the impact of negative price jumps and the induced term structure of

variance risk premia. As many investors are “long in the market” and the leverage effect is

very pronounced, negative price jumps are perceived as unfavorable events and thus can carry

particular risk premia. The contribution of negative price jumps to the IVRP is given by

IVRP(k)jt,t+τ = EPt [QVj
t,t+τ 1{Js < k}]− EQt [QVj

t,t+τ 1{Js < k}]

where 1{Js < k} is the indicator function of the event Js < k. We set k = −1%, i.e., we study

the contribution of daily jumps below −1% to the IVRP.26 Similar values of the threshold k

produce similar results for IVRP(k)jt,t+τ . Given Model (6)–(7), IVRP(k)jt,t+τ is available in

closed form.

Table 6 reports summary statistics for IVRP(k)jt,t+τ , when k = −1%. Since IVRP(k)jt,t+τ

is essentially constant when the time horizon τ increases, its relative contribution to the IVRP

is decreasing on average and thus largest for the 2-month IVRP. In other words, short-term

variance risk premia appear to reflect investors’ fear of a market drop, rather than the impact

of stochastic volatility on the investment opportunity set. Although price jumps below −1%

are infrequent events, their contribution to short-term IVRP is substantial. For the 2-month

horizon, IVRP(k)jt,t+τ accounts for about 20% of the IVRP.

Figure 5 shows the term structure of IVRP(k)jt,t+τ over time. Similarly to the IVRP, the term

26From January 1996 to September 2010, daily S&P500 returns are on average 3 times a month below −1%.
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structure of IVRP(k)jt,t+τ is generally downward sloping in quiet times. However, in contrast

to IVRP, during market crashes the term structure of IVRP(k)jt,t+τ becomes suddenly upward

sloping, reflecting the large jump risk due to a price fall. As an example, in Fall 2008 the whole

term structure of IVRP(k)jt,t+τ moved downward but the two-month IVRP(k)jt,t+τ exhibited

the largest negative drop and took several months to revert to average values. The 12- and

24-month IVRP(k)jt,t+τ took even longer to revert to average values. All in all, these findings

suggest that investors’ willingness to ensure against a market crash increases after a price fall

with a persistent impact on the IVRP. The dynamics of the term structure of IVRP(k)jt,t+τ

further show that the price fall has the strongest impact on the short-term IVRP but the

persistency is more pronounced for long-term IVRP.

In order to examine the extent to which the large variance risk premia potentially translate

into economic gains, we consider a simple but relatively robust trading strategy involving VS.

The trading strategy is robust in the sense that Model (6)–(7) and corresponding estimates are

used only to decide whether or not to invest in VS, i.e., to extract a trading signal.

Since realized variances are lower on average than VS rates, shorting VS contracts generates

a positive return on average. Such a trading strategy can be improved as follows. At each

day t, we compute the expected profit from shorting a VS contract, i.e., VSt,t+τ −EPt [QVt,t+τ ].

Then, the strategy is to short the VS contract only when the expected profit is large enough

and precisely n times larger than its expected standard deviation. When n = 0, the VS contract

is shorted as soon as the expected profit is positive. When n > 0, the contract is shorted less

often. If at day t the VS contract is shorted, we compute the actual return from the investment

by comparing the VS rate and the ex-post realized variance, i.e., VSt,t+τ − RVt,t+τ . Since the

strategy is short-and-hold (conditional on a model-based signal), transaction costs are unlikely

to affect the results and will not be considered. If at day t the VS is not shorted, the return from

t to t+ τ is obviously zero and not considered when assessing the performance of the strategy.

We repeat this procedure for each day t in our sample.
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As a benchmark, we consider the following trading strategy based on the S&P500 index. If

at any day t the VS contract with maturity t+ τ is shorted, we invest $1 in the S&P500 index

and liquidate the position at day t+ τ . Thus, the investment horizon is the same as the one for

the VS strategy. The actual return is computed using S&P500 index prices.

Table 8 compares the trading strategies using the classical Sharpe ratios. Given the non-

normality of returns, Sharpe ratios need to be cautiously interpreted. We also computed Sortino

ratios27 and results were very similar, and not reported. As the VS is a forward contract, Sharpe

ratios of the corresponding short-and-hold strategies are calculated simply as the average return

throughout our sample divided by its standard deviation. To compute Sharpe ratios of buy-

and-hold strategies with the S&P500 index, we use the daily term structure of interest rates,

downloaded from OptionMetrics and linearly interpolated to match the various investment

horizons. We experimented other values of interest rates, such as a constant rate of zero or 4%,

and the results reported in Table 8 change only marginally.

Shorting VS appears to be significantly more profitable than investing in the S&P500 index,

over the same time horizons. This suggests that VS contracts offer economically important

investment opportunities. It also confirms our model-based finding that investors are ready to

pay high “insurance premia” to obtain protection against volatility increases.

When the threshold n increases, the VS is shorted less often.28 As shown in Table 8, Sharpe

ratios from investing in VS are nearly uniformly and significantly increasing in the threshold

n. Thus, Model (6)–(7) seems to provide valuable information to generate a trading signal for

shorting variance swaps.

Figure 6 shows the returns of the short-and-hold trading strategy based on 12-month VS

27The Sortino ratio is a popular performance measure and defined as the mean return in excess of a minimum
acceptable return divided by the downside deviation. This ratio penalizes only returns below the minimum
acceptable return, in contrast to the standard deviation that equally penalizes returns below and above the
average return. In our computations we set the minimum acceptable return to zero, and the Sortino ratio
is (
∑T
t=1 rt/T )/σD, where rt is the time-t return of a given trading strategy, the downside variance σ2

D =∑T
t=1(rt 1{rt < 0})2/T and T is the total number of returns.

28For example, the 12-month VS contract is shorted 80%, 59% and 23% of the times when n = 1/4, 1/2, 1,
respectively.
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and the long-and-hold trading strategy based on the S&P500 index. With the exception of

2008, shorting VS tends to provide stable and substantial positive returns. The losses during

2008 reflect jump and volatility risk that short positions are carrying, but they are smaller than

the losses from the buy-and-hold S&P500 strategy. Long positions in the S&P500 generate

substantial more volatile returns. Interestingly, shorting VS does not appear to suffer from the

“picking up nickels in front of steamroller” syndrome during the period we looked at, despite

the inclusion out-of-sample of the 2007–2009 financial crisis.

Finally, does shorting VS provide any diversification benefit? Table 9 shows correlations

between daily returns of short positions in VS, long positions in the S&P500 index, and Treasury

bond yields over the same time horizons. Short positions in VS are generally positively correlated

with long positions in the S&P500 and, consistently with the patterns of the integrated risk

premia, more so during turbulent than quiet times. They are also generally negatively correlated

with long bond positions.

5.3. Risk Premia: Robustness Checks

To check the robustness of the parametric model, we note that the change of measure in Equa-

tion (11) implies that the mean jump size is different, not the jump intensity, under P and Q.

Now we let the jump intensity be λPt = λP0 + λP1 vt under P and λQt = λQ0 + λQ1 vt under Q. The

drift under P of the index price process becomes

µt = r − δ + γ1(1− ρ2)vt + γ2ρvt + gP (λP0 + λP1 vt)− gQ(λQ0 + λQ1 vt)

and jump risk premia become

JRPt = gP (λP0 + λP1 vt)− gQ(λQ0 + λQ1 vt)

IVRPjt,t+τ = EP [(Js)2](λP0 + λP1 E
P
t [QVc

t,t+τ ])− EQ[(Js)2](λQ0 + λQ1 E
Q
t [QVc

t,t+τ ]).
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Estimation results of this more general model imply nearly the same dynamics for spot variance,

stochastic long run mean, instantaneous risk premia, and integrated risk premia due to the

continuous part of the quadratic variation. However, the estimated overall risk neutral jump-

intensity, λQt , turns out to be smaller than objective jump-intensity, λPt . Pan (2002) reports the

same finding using her stochastic volatility model.29

6. Conclusion

We study the term structure of variance swaps, equity and variance risk premia. Comparing

VIX-type indices from the option market and VS rates, we find evidence for a large price jump

component in VS rates. This suggests that either the jump risk is heavily priced by VS traders

or some segmentation between the VS and option markets exists or both.

Based on our model estimates, the term structure of variance risk premia appears to be

negative and downward sloping, and the short-end of the term structure mainly reflects investors’

fear of a market drop, rather than the impact of stochastic volatility on the investment set.

Moreover, investors’ willingness to ensure against volatility risk appears to increase after a

market crash. This effect is stronger for short horizons and more persistent for long horizons.

We find that the term structure of equity risk premia, i.e., the expected excess returns

from buying and holding the S&P500 over fixed horizons, is countercyclical while its slope is

procyclical. Thus, during crisis periods investors demand large risk premia for holding equities,

but the risk premia largely depend and strongly decrease with the holding horizon. Finally,

economic indicators proxying for equity, option, corporate and Treasury bond market conditions

appear to have a rich and different impact throughout the term structure of equity and variance

risk premia.

29Pan considers jump intensities λP1 vt under P and λQ1 vt under Q, in our notation, and defines the jump-timing
risk premium as λQ1 −λP1 , the opposite of our definition. Note that Pan’s specification of jump intensities can be
recovered setting λP0 = λQ0 = 0 in our model.
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A. Pricing Kernel

Recall that the market price of risks for the Brownian motions are

Λ′t = [γ1

√
(1− ρ2)vt, γ2

√
vt, γ3

√
mt].

We define the pricing kernel (or Stochastic Discount Factor) as

πt = e−rt
dQ

dP

∣∣∣∣
Ft

= exp

(
−rt−

∫ t

0
Λ′u dW

P
u −

1

2

∫ t

0
Λ′uΛu du

) Nt∏
u=1

exp
(
aj + bjJ

s,P
u + cjJ

v,P
u

) µPv
µQv

where aj = ((µPj )2 − (µQj )2)/(2σ2
j ), bj = (µQj − µPj )/σ2

j , and cj = (µQv − µPv )/(µPv µ
Q
v ). The

process πt is a valid pricing kernel when deflated bank account and deflated cum-dividend price
processes are P -martingales.

When a jump occurs the pricing kernel jumps from πt− to πt = πt−e
aj+bjJ

s,P
t +cjJ

v,P
t

µPv
µQv

,

hence

dπt
πt

= −r dt− Λ′t dW
P
t + (exp(aj + bjJ

s,P
t + cjJ

v,P
t )

µPv

µQv
− 1) dNP

t (17)

= −r dt− (γ1

√
(1− ρ2)vt dW

P
1t + γ2

√
vt dW

P
2t + γ3

√
mt dW

P
3t)

+(exp(aj + bjJ
s,P
t + cjJ

v,P
t )

µPv

µQv
− 1) dNP

t .

The typical expression for the dynamic of πt includes an explicit compensator for the jump term
to emphasize that EPt [dπt/πt] = −r dt. Here we use a different expression for the jump term
in πt to obtain an interpretation for the coefficients aj , bj and cj . As we show below, the jump
term in (17) is already compensated.

Let Bt = ert denote the bank account level and Bπ
t = Bt πt the deflated bank account.

Applying Itô’s formula

d(Bπ
t ) = Bt dπt + πt dBt

= Bπ
t (−r dt− Λ′t dW

P
t + (exp(aj + bjJ

s,P
t + cjJ

v,P
t )

µPv

µQv
− 1) dNP

t ) +Bπ
t r dt

d(Bπ
t )/Bπ

t = −Λ′t dW
P
t + (exp(aj + bjJ

s,P
t + cjJ

v,P
t )

µPv

µQv
− 1) dNP

t .

Hence, Bπ
t is a P -martingale (or has zero drift) when EP [exp(aj + bjJ

s,P
t + cjJ

v,P
t )µ

P
v

µQv
] = 1.

As Js,P and Jv,P are independent, the last equation holds when EP [exp(aj + bjJ
s,P
t )] = 1 and

EP [exp(cjJ
v,P
t )µ

P
v

µQv
] = 1, which is shown in the following calculations:

EP [exp(aj + bjJ
s,P
t )] = exp(aj + bjµ

P
j + b2j

σ2
j

2
)

aj + bjµ
P
j + b2j

σ2
j

2
=

(µPj )2 − (µQj )2

2σ2
j

+
µQj − µPj

σ2
j

µPj +

(
µQj − µPj

σ2
j

)2
σ2
j

2

=
(µPj )2 − (µQj )2 + 2µQj µ

P
j − 2(µPj )2 + (µQj )2 + (µPj )2 − 2µQj µ

P
j

2σ2
j

= 0

42



where we used Js,P ∼ N (µPj , σ
2
j ). As Jv,P ∼ Exp(µPv )

EP [exp(cjJ
v,P
t )

µPv

µQv
] =

µPv

µQv

∫ ∞
0

ecjJ
v e−J

v/µPv

µPv
dJv = 1.

Let Sδ,t = Ste
δt denote the cum-dividend stock price, hence

dSδ,t
Sδ,t

=
dSt
St

+ δ dt = (r + γ1(1− ρ2)vt + γ2ρvt − gQλt) dt+
√

(1− ρ2)vt dW
P
1t + ρ

√
vt dW

P
2t

+(exp(Js,Pt )− 1) dNP
t

where St is the ex-dividend stock price. Let Sπδ,t be the deflated cum-dividend stock price,
i.e., Sδ,t πt. When a jump occurs, both πt and St jump and Sπδ jumps from Sπδ,t− to Sπδ,t =

Sπδ,t− exp(aj + bjJ
s,P
t + Js,Pt + cjJ

v,P
t )µ

P
v

µQv
. Hence, at the jump time, dSπδ,t/S

π
δ,t = exp(aj + (bj +

1)Js,Pt + cjJ
v,P
t )µ

P
v

µQv
− 1.

Applying Itô’s formula, with πct and Scδ,t denoting the continuous part of πt and Sδ,t, respec-
tively,

dSπδ,t = Sδ,t dπ
c
t + πt dS

c
δ,t + dScδ,t dπ

c
t + Sδ,tπt(exp(aj + (bj + 1)Js,Pt + cjJ

v,P
t )

µPv

µQv
− 1) dNP

t

= Sδ,t πt(−r dt− γ1

√
(1− ρ2)vt dW

P
1t − γ2

√
vt dW

P
2t − γ3

√
mt dW

P
3t)

+πt Sδ,t((r + γ1(1− ρ2)vt + γ2ρvt − gQλt) dt+
√

(1− ρ2)vt dW
P
1t + ρ

√
vt dW

P
2t)

−Sδ,tπt(γ1(1− ρ2)vt + γ2ρvt) dt+ Sδ,tπt(exp(aj + (bj + 1)Js,Pt + cjJ
v,P
t )

µPv

µQv
− 1) dNP

t

dSπδ,t
Sπδ,t

=
√

(1− ρ2)vt(1− γ1) dWP
1t + (ρ− γ2)

√
vt dW

P
2t − γ3

√
mt dW

P
3t

+(exp(aj + (bj + 1)Js,Pt + cjJ
v,P
t )

µPv

µQv
− 1) dNP

t − gQλt dt.

Hence, Sπδ,t is a P -martingale (or has zero drift) when EP [exp(cjJ
v,P
t )µ

P
v

µQv
] = 1, which we already

showed above, and when EP [exp(aj +(bj +1)Js,Pt )−1] = gQ, which is indeed the case as shown
in the following calculations:

EP [exp(aj + (bj + 1)Js,Pt )− 1] = gQ

exp(aj + (bj + 1)µPj + (bj + 1)2
σ2
j

2
)− 1 = exp(µQj +

σ2
j

2
)− 1

aj + bjµ
P
j + µPj + b2j

σ2
j

2
+ 2bj

σ2
j

2
= µQj

µPj +
µQj − µPj

σ2
j

σ2
j = µQj

where we used aj +bjµ
P
j +b2j

σ2
j

2 = 0, which is implied by the martingale property of the deflated
bank account.

Finally, the relation between the pricing kernel πt and the risk-neutral dynamics is derived
as usual. Define the density process ξt = πte

rt. Under usual technical conditions, applying Itô’s

formula, dξt/ξt = −Λ′t dW
P
t + (exp(aj + bjJ

s,P
t + cjJ

v,P
t )µ

P
v

µQv
− 1) dNP

t , which shows that ξt is
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a P -martingale and hence it uniquely defines an equivalent martingale measure Q. Defining
the Q-Brownian motions as dWQ

1t = dWP
1t + γ1

√
(1− ρ2)vt dt, dW

Q
2t = dWP

2t + γ2
√
vt dt and

dWQ
3t = dWP

3t + γ3
√
mt dt, gives the risk-neutral dynamic of the stock price S, spot variance v,

and stochastic long run mean m in Equation (7).

B. Integrated Equity Risk Premia

To compute the IERP in (16) we rely on the transform analysis of Duffie et al. (2000), which
is often used in finance applications; e.g., Duffie et al. (2003). In this appendix we provide a
self-contained application of this theory to the calculation of the IERP in our setting.

The basic step is to compute a conditional expectation of the form EPt [exp(ζ
∫ t+τ
t vs ds)],

where ζ is a given constant. The first conditional expectation in (16) is EPt [St+τ/St] =
EPt [exp(

∫ t+τ
t µs ds)], where µs is an affine function of vs, defined after (6).30

Define the stochastic process ψt = EPt [exp(ζ
∫ T

0 vs ds)], which is a P -martingale by con-
struction for all t ≥ 0, under standard integrability conditions. Guess the functional form
ψt = exp(ζ

∫ t
0 vs ds) exp(A(τ) + B(τ)vt + C(τ)mt), which is exponentially affine in the state

variables vt and mt. Recall τ = T − t. The necessary derivatives to apply Itô’s formula to ψt
are

∂ψt
∂t

= ψt(ζvt −A(τ)′ −B(τ)′vt − C(τ)′mt)

∂ψt
∂vt

= ψtB(τ),
∂2ψt
∂v2

t

= ψtB(τ)2

∂ψt
∂mt

= ψtC(τ),
∂2ψt
∂m2

t

= ψtC(τ)2

If a jump occurs at time t, the spot variance jumps from vt− to vt = vt− + Jv,Pt , and
consequently the process ψ jumps from ψt− to ψt, which implies that

ψt
ψt−
− 1 =

eζ
∫ t
0 vs ds eA(τ)+B(τ)vt

eζ
∫ t
0 vs ds eA(τ)+B(τ)vt−

− 1 = eB(τ)(vt−vt− ) − 1 = eB(τ)Jv,Pt − 1.

Rewriting the P -dynamic of the spot variance, with obvious notation, as

dvt = (kQv mt − kPv vt) dt+ σv
√
vt dW

P
2t + Jv,Pt dNt = dvcontt + Jv,Pt dNt

30The second conditional expectation is simply EQt [St+τ/St] = exp((rt,t+τ − δ)τ), assuming a time varying but
deterministic term structure of interest rates.
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and applying Itô’s formula to ψt gives

dψt
ψt−

= (ζvt −A(τ)′ −B(τ)′vt − C(τ)′mt) dt+B(τ)(dvcontt ) +
1

2
B(τ)2(dvcontt )2

+C(τ)(dmt) +
1

2
C(τ)2(dmt)

2 + (
ψt
ψt−
− 1)dNt

= (ζvt −A(τ)′ −B(τ)′vt − C(τ)′mt) dt+B(τ)(kQv mt − kPv vt)dt+ σv
√
vtdW

P
2t) +

1

2
B(τ)2σ2

vvt dt

+C(τ)(kPm(θPm −mt)dt+ σm
√
mtdW

P
3t) +

1

2
C(τ)2σ2

mmt dt

+(eB(τ)Jv,Pt − 1)dNt − EP [eB(τ)Jvt − 1](λ0 + λ1vt) dt+ EP [eB(τ)Jvt − 1](λ0 + λ1vt) dt

= (ζvt −A(τ)′ −B(τ)′vt − C(τ)′mt) dt+B(τ)(kQv mt − kPv vt)dt+
1

2
B(τ)2σ2

vvt dt

+C(τ)kPm(θPm −mt)dt+
1

2
C(τ)2σ2

mmt dt

+EP [eB(τ)Jvt − 1](λ0 + λ1vt) dt+ dMP
t

where dMP
t = σv

√
vt dW

P
2t + σm

√
mt dW

P
3t + (eB(τ)Jv,Pt − 1)dNt −EP [eB(τ)Jvt − 1](λ0 + λ1vt) dt

is a P -martingale increment.
As ψt is a P -martingale, the drift must be zero for each time t and level of the state variables

vt and mt. Collecting terms in dt, vt dt and mt dt, respectively, and setting them equal to zero,
give three nonlinear ordinary differential equations

0 = −A(τ)′ + C(τ)kPmθ
P
m + EP [eB(τ)Jvt − 1]λ0

0 = ζ −B(τ)′ −B(τ)kPv +
1

2
B(τ)2σ2

v + EP [eB(τ)Jvt − 1]λ1

0 = −C(τ)′ +B(τ)kQv − C(τ)kPm +
1

2
C(τ)2σ2

m

for the coefficients A(τ), B(τ) and C(τ), with terminal conditions A(0) = B(0) = C(0) = 0. As
the system is time-homogenous, for each time horizon τ , these coefficients need to be computed
only once. Thus, at each time t, EPt [exp(ζ

∫ t+τ
t vs ds)] = exp(A(τ) +B(τ)vt + C(τ)mt).

The expectation in the first two differential equations is

EP [eB(τ)Jvt ] =

∫ ∞
0

eB(τ)Jv e
−Jv/µPv

µPv
dJv =

1

µPv

∫ ∞
0

e
−Jv

(
1

µPv
−B(τ)

)
dJv =

1

1−B(τ)µPv

and the integral above converges when
(

1
µPv
−B(τ)

)
> 0, which is indeed the case according to

our estimates. Then

EP [eB(τ)Jvt − 1] =
B(τ)µPv

1−B(τ)µPv

is substituted in the first two differential equations, and the system is solved numerically.
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Figure 1. Term structure of variance swap rates. Values are in volatility percentage units, i.e.,

VS
1/2
t,t+τ ×100, with 2-, 3-, 6-, 12-, and 24-month to maturity from January 4, 1996 to September

2, 2010, that are 3,624 observations for each time to maturity.
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Figure 2. Term structure of model-free jump component in variance swap rates. VS rates
minus calculated VIX-type indices for 2-, 3-, and 6-month to maturity from January 4, 1996 to
September 2, 2010, that are 3,624 observations for each maturity. The difference is in volatility

percentage units, i.e., (VS
1/2
t,t+τ −VIX

1/2
t,t+τ )× 100.
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Figure 3. Term structure of integrated equity risk premia and S&P500 index. Upper graph:
annualized integrated equity risk premia, i.e., (EPt [St+τ/St]/τ − EQt [St+τ/St]/τ)× 100. Lower
graph: S&P500 index, St. Vertical line denotes beginning of out-of-sample period, i.e., April 3,
2007.
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Figure 4. Time series plots of macro variables: CScorp the difference between Moody’s BAA
and AAA corporate bond yields, CSgov the difference between Moody’s AAA corporate bond
yield and 3-month Treasury securities, TermS the difference between the yields on 2-year and
3-month Treasury securities, TermL the difference between the yields on 10-year and 2-year
Treasury securities. All variables are daily. Vertical line denotes beginning of out-of-sample
period, i.e., April 3, 2007.

49



97 98 99 00 01 02 03 04 05 06 07 08 09 10

−10

−8

−6

−4

−2

0

IV
R

P
 %

Year

In−Sample Out−of−Sample

97 98 99 00 01 02 03 04 05 06 07 08 09 10

−0.5

−0.4

−0.3

−0.2

−0.1

Year

IV
R

P
 %

, J
s  <

 −
0.

01

 

 

In−Sample Out−of−Sample

2−month
12−month
24−month

Figure 5. Term structure of integrated variance risk premia. Upper graph: integrated variance
risk premia, i.e., (EPt [QVt,t+τ ]−EQt [QVt,t+τ ])×100. Lower graph: integrated variance risk pre-

mia due to price jump below k = −0.01, i.e., (EPt [QVj
t,t+τ 1{Js < k}]−EQt [QVj

t,t+τ 1{Js < k}])×
100. Vertical line denotes beginning of out-of-sample period, i.e., April 3, 2007.
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based on 12-month VS, i.e., VSt,t+τ − RVt,t+τ for each day t in our sample, where τ is one
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(dash line) denotes the one-year interest rate for each day in our sample. Vertical line denotes
beginning of out-of-sample period, i.e., April 3, 2007.
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Panel A: Variance Swap Rates
Maturity Mean Std Skew Kurt AC1 Q22 ADF

2 22.14 8.18 1.53 7.08 0.982 62,908.97 −3.79
3 22.32 7.81 1.32 6.05 0.988 66,449.22 −3.52
6 22.87 7.40 1.10 4.97 0.992 69,499.72 −3.30
12 23.44 6.88 0.80 3.77 0.994 71,644.69 −2.82
24 23.93 6.48 0.57 2.92 0.995 72,878.68 −2.47

Panel B: VIX-type Indices, CBOE method
2 21.74 7.63 1.53 7.22 0.985 63,551.35 −3.83
3 21.95 7.32 1.43 6.83 0.987 64,644.41 −3.72
6 22.08 6.85 1.16 5.58 0.991 65,736.38 −3.62

Panel C: VIX-type Indices, Carr–Wu method
2 22.34 7.82 1.53 7.19 0.985 63,699.78 −3.83
3 22.34 7.46 1.42 6.78 0.989 65,703.56 −3.83
6 22.30 7.00 1.20 5.75 0.999 66,490.72 −3.70

Panel D: Realized Variances
2 18.09 8.62 2.13 10.70 0.997 68,750.50 −4.96
3 18.21 8.47 2.13 10.43 0.998 73,156.42 −4.73
6 18.58 8.37 2.04 9.07 0.999 76,928.13 −3.44
12 19.07 7.88 1.54 5.97 0.999 78,412.59 −2.51
24 19.91 6.97 0.68 3.02 0.999 76,028.01 −1.97

Table 1. Summary statistics, variables in levels. Panel A: variance swap rates on the S&P500
index. Time to maturities are in months. The sample period is from January 4, 1996 to
September 2, 2010, for a total of 3,624 observations for each time to maturity. The table reports
mean, standard deviation (Std), skewness (Skew), kurtosis (Kurt), first order autocorrelation
(AC1) the Ljung–Box portmanteau test for up to 22nd order autocorrelation (Q22), the test 10%
critical value is 30.81; the augmented Dickey–Fuller test for unit root involving 22 augmentation
lags, a constant term and time trend (ADF), the test 10% critical value is −3.16. Panels B
and C: 2-, 3-, and 6-month VIX-type indices calculated using SPX options and applying the
revised CBOE VIX and Carr–Wu methodologies, respectively. Panel D: ex-post S&P500 realized
variances for various time to maturities. All variables are in volatility percentage units.
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Panel A: Changes in Variance Swap Rates
Maturity Mean Std Skew Kurt AC1 Q22 ADF

2 0.01 1.42 0.10 15.04 −0.11 166.09 −14.05
3 0.00 1.11 −0.01 14.87 −0.09 143.78 −13.97
6 0.00 0.83 0.42 12.61 −0.06 73.78 −13.42
12 0.00 0.65 0.29 12.05 −0.04 70.40 −13.18
24 0.00 0.53 0.18 10.94 −0.01 51.45 −13.41

Panel B: Changes in VIX-type Indices, CBOE method
2 0.01 1.16 0.31 17.27 −0.12 114.07 −13.93
3 0.00 1.07 0.27 16.69 −0.09 101.00 −14.36
6 0.00 0.80 0.48 11.60 −0.01 73.14 −14.00

Panel C: Changes in VIX-type Indices, Carr–Wu method
2 0.01 1.18 0.31 15.98 −0.11 126.48 −14.02
3 0.00 0.97 0.63 13.43 −0.06 76.78 −14.34
6 0.00 0.81 0.60 12.78 −0.03 83.17 −13.73

Table 2. Summary statistics, daily changes. Panel A: daily change in variance swap rates on
the S&P500 index. Panels B and C: daily change in the 2-, 3-, and 6-month VIX-type indices
calculated using SPX options and applying the revised CBOE VIX and Carr–Wu methodologies,
respectively. Data, sample period and summary statistics are the same as in Table 1.
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SV1F SV2F SV2F-PJ SV2F-PJ-VJ
Estim. S.E. Estim. S.E. Estim. S.E. Estim. S.E.

κPv 0.797 0.008 5.060 0.005 4.803 0.353 5.340 0.406
σv 0.272 0.002 0.525 0.003 0.419 0.009 0.394 0.006
κPm 0.221 0.011 0.234 0.086 0.491 0.039
σm 0.154 0.002 0.141 0.002 0.167 0.001

θPm 0.047 0.001 0.054 0.001 0.043 0.016 0.038 0.009
ρ −0.674 0.008 −0.743 0.006 −0.713 0.010 −0.688 0.008
γ1 1.303 2.537 0.742 2.591 −2.545 4.206 −5.054 5.495
γ2 −1.322 1.173 −1.838 1.374 −2.244 0.851 −5.633 2.016
γ3 −0.548 1.012 −0.673 0.610 −0.954 1.294
λ0 3.669 0.621 2.096 0.467
λ1 44.770 17.227 21.225 18.584
µPj 0.010 0.008 −0.004 0.001

µQj −0.001 0.009 −0.012 0.001

σj 0.038 0.003 0.043 0.000
µPv 0.001 0.000

µQv 0.002 0.000
σe1 0.006 0.000 0.004 0.000 0.004 0.000 0.004 0.000
σe2 0.006 0.000 0.002 0.000 0.002 0.000 0.002 0.000
σe3 0.011 0.000 0.003 0.000 0.003 0.000 0.007 0.000
σe4 0.014 0.000
ρe 0.288 0.016 −0.093 0.005 −0.088 0.006 −0.053 0.000

Log-likelihood 60,008.4 73,274.5 74,381.8 74,490.5

Table 3. Model estimates. Estimation results for the Model (6)–(7) (labeled SV2F-PJ-VJ) and
three nested models (labeled SV1F, SV2F and SV2F-PJ, respectively). For each model, estimate
(Estim.) and standard errors (S.E.) are reported. The likelihood-based estimation procedure
is described in Section 3. Variance swap rates with 2-, 3-, 6-, 12-, 24-month to maturity and
S&P500 returns range from January 4, 1996 to April 2, 2007. Variance swap rates with 3-
and 12-month (3-month) to maturity are assumed to be observed without errors (for the SV1F
model). Variance swap rates with 2-, 6-, 24-month (and, for the SV1F model, 12-month) to
maturity are assumed to be observed with errors whose standard deviations are σe1 , σe2 , σe3
(and σe4), respectively, and correlation ρe. Interest rate r = 4% and dividend yield δ = 1.5%.

In-Sample Out-of-Sample
Mean RMSE Mean RMSE Mean RMSE Mean RMSE

Heston SJSV Heston SJSV

V̂S2m −VS2m −0.081 0.851 −0.151 0.739 0.259 1.420 0.194 1.036

V̂S6m −VS6m 0.002 1.119 0.058 0.397 −0.258 1.403 −0.209 0.470

V̂S24m −VS24m 1.001 2.950 0.144 0.555 0.469 3.074 −0.137 0.559

Table 4. Variance swap pricing errors. The pricing error is defined as the model-based VS rate

minus observed VS rate, in volatility percentage units, i.e., (EQt [QVt,t+τ ]1/2 − VS
1/2
t,t+τ ) × 100.

The table reports mean and root mean square error of pricing errors for VS rate with 2-, 6-,
and 24-month to maturity, under the Heston model and Model (6)–(7). In-sample period, used
to estimate the models, ranges from January 4, 1996 to April 2, 2007. Out-of-sample period
ranges from April 3, 2007 to September 2, 2010.
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In-Sample Out-of-Sample
Mean Std Mean Std

DRP 4.66 3.99 9.30 9.49
JRP 2.38 0.57 3.05 1.36
VRP −8.56 7.33 −17.08 17.42
LRMRP −0.77 0.56 −1.20 0.68

Table 5. Spot risk premia. Diffusive risk premium DRPt = (γ1(1 − ρ2) + γ2ρ)vt; Jump risk
premium JRPt = (EP [eJ ]−EQ[eJ ])(λ0+λ1vt); Variance risk premium VRPt = γ2σvvt; Long run
mean risk premium LRMRPt = γ3σmmt. Risk premia are based on Model (6)–(7). In-sample
period, used to estimate the model, ranges from January 4, 1996 to April 2, 2007. Out-of-sample
period ranges from April 3, 2007 to September 2, 2010. Entries are in percentage.

In-Sample Out-of-Sample In-Sample Out-of-Sample
Maturity Mean Std Mean Std Mean Std Mean Std

Equity Variance
2 6.68 3.71 11.00 8.29 −0.63 0.47 −1.18 1.06
6 6.37 3.08 9.63 5.81 −1.23 0.87 −2.21 1.72
12 6.28 2.79 8.82 4.43 −1.59 1.11 −2.71 1.83
24 6.45 2.52 8.28 3.40 −1.79 1.22 −2.89 1.74

Price Jump Contribution Js < −1% Contribution
2 2.40 0.49 2.97 1.11 −0.12 0.03 −0.16 0.07
6 2.44 0.44 2.89 0.84 −0.13 0.04 −0.18 0.08
12 2.52 0.43 2.88 0.68 −0.14 0.05 −0.19 0.07
24 2.71 0.46 2.97 0.59 −0.15 0.05 −0.19 0.07

Table 6. Term structure of integrated equity risk premia and integrated variance risk premia.
Left panels: integrated equity risk premium, i.e., (EPt [St+τ/St]/τ −EQt [St+τ/St]/τ)× 100, and
equity risk premium due to the price jump component. Right panels: integrated variance risk
premium, i.e., (EPt [QVt,t+τ ]−EQt [QVt,t+τ ])×100, and variance risk premium due to price jump
Js below −1%. Risk premia are based on Model (6)–(7). In-sample period, used to estimate
the model, ranges from January 4, 1996 to April 2, 2007. Out-of-sample period ranges from
April 3, 2007 to September 2, 2010.
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Mat. Interc. S&P VIX CScorp CSgov TermS TermL R2

Panel A: Integrated Equity Risk Premium
2 −5.27 −20.22 0.59 1.99 −1.20 1.04 0.96 93.1

(−10.33) (−3.25) (14.79) (3.11) (−3.45) (2.72) (2.25)
3 −4.56 −16.06 0.53 1.71 −0.67 0.70 0.29 92.5

(−10.33) (−2.79) (13.75) (2.91) (−1.84) (1.79) (0.63)
6 −3.10 −8.21 0.41 1.15 0.33 0.07 −0.95 88.2

(−7.35) (−1.63) (10.28) (2.06) (0.62) (0.13) (−1.35)
12 −1.57 −1.96 0.31 0.65 1.07 −0.39 −1.91 79.2

(−2.88) (−0.44) (6.94) (1.05) (1.44) (−0.56) (−1.86)
24 0.01 1.20 0.23 0.26 1.39 −0.54 −2.37 70.9

(0.02) (0.31) (5.31) (0.42) (1.73) (−0.73) (−2.12)

Panel B: Integrated Variance Risk Premium
2 0.88 2.72 −0.08 −0.26 0.18 −0.14 −0.16 93.3

(13.36) (3.50) (−15.44) (−3.21) (4.20) (−3.07) (−3.11)
3 1.13 3.13 −0.10 −0.31 0.17 −0.15 −0.13 93.3

(14.48) (3.16) (−14.86) (−3.10) (2.92) (−2.35) (−1.76)
6 1.52 2.89 −0.12 −0.36 −0.02 −0.05 0.14 90.6

(14.12) (2.06) (−11.80) (−2.44) (−0.12) (−0.42) (0.87)
12 1.65 1.06 −0.13 −0.29 −0.41 0.17 0.67 81.4

(7.84) (0.61) (−7.39) (−1.24) (−1.41) (0.64) (1.68)
24 1.46 −0.88 −0.11 −0.19 −0.73 0.37 1.09 70.3

(4.71) (−0.48) (−4.98) (−0.60 (−1.71) (0.95) (1.83)

Table 7. Regression analysis for integrated risk premiums. Panel A: regression analysis of
the annualized integrated equity risk premium, i.e., (EPt [St+τ/St]/τ − EQt [St+τ/St]/τ) × 100,
based on Model (6)–(7). For each maturity (Mat.), the integrated equity risk premium is
regressed on a constant (Interc.), S&P500 returns, VIX index, CScorp the difference between
Moody’s BAA and AAA corporate bond yields, CSgov the difference between Moody’s AAA
corporate bond yield and 3-month Treasury securities, TermS the difference between the yields
on 2-year and 3-month Treasury securities, TermL the difference between the yields on 10-year
and 2-year Treasury securities. All variables are daily. Maturity is in months. The sample
period ranges from January 4, 1996 to September 2, 2010. For each maturity, the first row
reports point estimates, the second row reports (in parenthesis) t-statistics based on robust
standard errors computed using the Newey and West (1987) covariance matrix estimator with
the number of lags optimally chosen according to Andrews (1991). R2 is the adjusted R2 in
percentage. Panel B: corresponding regression analysis for the integrated variance risk premia,
i.e., (EPt [QVt,t+τ ]− EQt [QVt,t+τ ])× 100.
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In-Sample
Short Variance Swap Long S&P500

Horizon 2 3 6 12 24 2 3 6 12 24

Threshold
Always 0.59 0.61 0.68 0.85 0.67 0.13 0.16 0.22 0.27 0.18

0 0.59 0.61 0.68 0.85 0.68 0.13 0.16 0.22 0.27 0.18
1/4 0.67 0.72 0.71 0.93 1.22 0.07 0.14 0.15 0.22 0.10
1/2 0.94 1.39 1.30 1.02 1.37 0.59 0.85 0.55 −0.03 −0.18
1 1.47 3.16 2.05 2.21 2.64 1.04 2.92 1.32 0.61 −0.33

Out-of-Sample
Short Variance Swap Long S&P500

Always 0.23 0.17 0.08 0.03 0.07 −0.02 −0.10 −0.10 −0.18 −0.06
0 0.23 0.17 0.08 0.03 0.08 −0.02 −0.10 −0.10 −0.18 −0.05

1/4 0.67 0.21 0.10 0.04 0.26 0.36 −0.03 −0.10 −0.14 0.12
1/2 0.57 1.13 0.36 0.06 0.43 0.34 0.46 0.19 −0.09 0.29
1 0.32 0.76 1.84 2.47 2.98 0.09 0.11 1.20 1.33 1.51

Table 8. Sharpe ratios of short positions in variance swaps and long positions in the S&P500
index. For each day t in the sample, the expected profit from a short position in a VS contract is
computed, i.e., VSt,t+τ −EPt [QVt,t+τ ]. If the expected profit is n times larger than its standard
deviation, then the VS contract is shorted. Otherwise no position is taken at day t. The
column “Threshold” reports the number of standard deviations n. “Always” means the VS
contract is always shorted. At time t+ τ , the actual profit is computed, i.e., VSt,t+τ −RVt,t+τ ,
where RVt,t+τ is the ex-post realized variance. The notional amount in the VS contract is such
that for each unit increase of the variance payoff, the contract pays out $1. The investment
strategy in the S&P500 is as follows. If at day t the VS contract with maturity t+ τ is shorted,
$1 is invested in the S&P500 at day t. The position is held until t + τ and then liquidated.
Sharpe ratios are computed using all the returns from each investment strategy. Interest rates
are obtained by linearly interpolating the daily term structure of zero-coupon Treasury bond
yields. VS contracts with 2-, 3-, 6-, 12- and 24-month to maturities are considered. The row
“Horizon” reports the time to maturity. In-sample period, used to estimate the model, ranges
from January 4, 1996 to April 2, 2007. Out-of-sample period ranges from April 3, 2007 to
September 2, 2010.
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In-Sample Out-of-Sample
S&P500 Int-Rate Short VS S&P500 Int-Rate Short VS

2-month Returns 2-month Returns
S&P500 1.00 0.09 0.57 1.00 −0.31 0.63
Int-Rate 0.09 1.00 −0.01 −0.31 1.00 −0.25
Short VS 0.57 −0.01 1.00 0.63 −0.25 1.00

12-month Returns 12-month Returns
S&P500 1.00 0.05 0.30 1.00 −0.64 0.91
Int-Rate 0.05 1.00 −0.01 −0.64 1.00 −0.54
Short VS 0.30 −0.01 1.00 0.91 −0.54 1.00

Table 9. Correlations between returns of short positions in variance swaps, long positions in the
S&P500 index and interest rates. Short VS denotes actual, ex-post returns of the short-and-hold
VS position, i.e., VSt,t+τ − RVt,t+τ for each day t in our sample, where τ is 2- and 12-month.
S&P500 denotes actual, ex-post returns of the long-and-hold S&P500 position, i.e., St+τ/St− 1
for each day t in our sample, where τ is 2- and 12-month. Int-Rate denotes the annualized
interest rate for 2- and 12-month time horizons observed at a daily frequency. In-sample period
ranges from January 4, 1996 to April 2, 2007. Out-of-sample period ranges from April 3, 2007
to September 2, 2010.
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Cheridito, P., Filipović, D., Kimmel, R. L., 2007. Market price of risk specifications for affine
models: Theory and evidence. Journal of Financial Economics 83, 123–170.

Chernov, M., Gallant, A. R., Ghysels, E., Tauchen, G. T., 2003. Alternative models for stock
price dynamics. Journal of Econometrics 116, 225–257.

Chernov, M., Ghysels, E., 2000. A study towards a unified approach to the joint estimation of
objective and risk neutral measures for the purpose of options valuation. Journal of Financial
Economics 57, 407–458.

Christoffersen, P., Heston, S., Jacobs, K., 2009. The shape and term structure of the index option
smirk: Why multifactor stochastic volatility models work so well. Management Science 55,
1914–1932.

Corradi, V., Distaso, W., Mele, A., 2013. Macroeconomic determinants of stock volatility and
volatility premiums. Journal of Monetary Economics 60, 203–220.

Demeterfi, K., Derman, E., Kamal, M., Zou, J., 1999. A guide to volatility and variance swaps.
Journal of Derivatives 4, 9–32.

Dew-Becker, I., Giglio, S., Le, A., Rodriguez, M., 2014. The price of variance risk. Tech. rep.,
Chicago Booth.
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