Adverse Selection, Slow Moving Capital and Misallocation.

William Fuchs Brett Green Dimitris Papanikolaou

Berkeley Haas - Kellogg

Fall 2013

Motivation

- Economies respond sluggishly to aggregate shocks
 - Christiano, Eichenbaum and Evans (2005), Eberly, Rebelo and Vincent (2012)
- Capital misallocation matters.
 - e.g., Syverson (2004); Foster, Haltiwanger, and Syverson (2008)
- Especially in developing countries.
 - e.g., Hsieh and Klenow (2009)

Motivation (cont'd)

- Adjustment costs often used to explain these patterns:
 - 'k-dot' adjustment cost generate slow changes in the capital stock
 - Pindyck (1982), Abel (1984), Abel and Eberly (1994)
 - 'i-dot' adjustment costs to generate slow changes in investment
 - Christiano, Eichenbaum and Evans (2005)
 - Counter-cyclical adjustment costs generate pro-cyclical reallocation
 - Eisfeldt and Rampini (2006)
- But what do these costs represent? Physical costs vs market frictions

 A microfoundation for capital adjustment costs based on adverse selection

- A microfoundation for capital adjustment costs based on adverse selection
 - Flexible model: generates rich reallocation dynamics

- A microfoundation for capital adjustment costs based on adverse selection
 - Flexible model: generates rich reallocation dynamics
 - Misallocation increases with
 - productivity dispersion (degree of adverse selection)
 - frequency of productivity shifts
 - lower interest rate

- A microfoundation for capital adjustment costs based on adverse selection
 - Flexible model: generates rich reallocation dynamics
 - Misallocation increases with
 - productivity dispersion (degree of adverse selection)
 - frequency of productivity shifts
 - lower interest rate
- Applications

- A microfoundation for capital adjustment costs based on adverse selection
 - Flexible model: generates rich reallocation dynamics
 - Misallocation increases with
 - productivity dispersion (degree of adverse selection)
 - frequency of productivity shifts
 - lower interest rate
- Applications
 - Physical (or Human) Capital Reallocation.

- A microfoundation for capital adjustment costs based on adverse selection
 - Flexible model: generates rich reallocation dynamics
 - Misallocation increases with
 - productivity dispersion (degree of adverse selection)
 - frequency of productivity shifts
 - lower interest rate
- Applications
 - Physical (or Human) Capital Reallocation.
 - Technological Innovation and New Investment.

- A microfoundation for capital adjustment costs based on adverse selection
 - Flexible model: generates rich reallocation dynamics
 - Misallocation increases with
 - productivity dispersion (degree of adverse selection)
 - frequency of productivity shifts
 - lower interest rate
- Applications
 - Physical (or Human) Capital Reallocation.
 - Technological Innovation and New Investment.
 - Slow moving financial capital.

Related Literature

Convex Adjustment Cost and Time to Build Models

- Hall and Jorgenson (1967), Lucas and Prescott (1971), Hayashi (1982), Kydland and Prescott (1982), Pindyck (1982), Abel (1983), Abel and Eberly (1994), Eisfeldt and Rampini (2006), Lucca (2007)

Search and Capital Mobility:

- Vayanos and Weil (2005), Duffie and Strulovici (2012), Gromb and Vayanos (2012)

Financial Constraints:

- Bernanke and Gertler (1989), Kiyotaki and Moore (1998), Banerjee and Newman (1993), Gilchrist, Sim, and Zakrajek (2013)

Adverse Selection and Delay:

- Jaansen and Roy (2002), Daley and Green (2012, 2013), Fuchs and Skrzypacz (2013), Kurlat (2013)

The Model

- Different locations $l \in \{a, b\}$
 - Sectors, industries, or physical locations
- Mass M > 1 of firms in each location
 - Firms can operate a unit of capital only in their own location
- Unit mass of capital of quality: $\theta \in [\underline{\theta}, \overline{\theta}] \sim F(\theta)$ with $dF(\theta) > 0$
 - Quality is privately observed by owner of capital
- The state $\phi_t \in \{\phi_A, \phi_B\}$ is a Markov process with transition probability λ .
- Output flow $\pi_l\left(\theta,\phi_t\right)$ depends on capital quality, its location and the state:

	Location	
State	π_{A}	π_{B}
ϕ_{A}	$\pi_1(\theta)$	$\pi_0(\theta)$
$\phi_{\mathcal{B}}$	$\pi_0(\theta)$	$\pi_1(\theta)$

The Model (cont'd)

- In order for capital to be reallocated it must be traded in a continuously open market.
- Only friction adverse selection. (not adj costs, no search, deep pockets)
- Firms can observe in which sector the capital is that they are buying but not its quality.
- ullet Existing capital depreciates and new capital flows in at rate δ
 - New capital flows into efficient sector (maintains full support).
- ullet Firms maximize the present expected profits discounted at $ho=r+\delta$

• If we have just one permanent transition then the value to the buyers of capital of type θ is simply $V_1\left(\theta\right)=\frac{\pi_1(\theta)}{\rho}.$

- If we have just one permanent transition then the value to the buyers of capital of type θ is simply $V_1\left(\theta\right)=\frac{\pi_1\left(\theta\right)}{\varrho}$.
- If the state is transitory then buyers will take into account the inefficiencies they will face at the time of future sales when valuing capital.

- If we have just one permanent transition then the value to the buyers of capital of type θ is simply $V_1\left(\theta\right)=\frac{\pi_1\left(\theta\right)}{\rho}.$
- If the state is transitory then buyers will take into account the inefficiencies they will face at the time of future sales when valuing capital.
 - The problem is harder since $V_1(\theta)$ will be endogenous.

- If we have just one permanent transition then the value to the buyers of capital of type θ is simply $V_1\left(\theta\right)=\frac{\pi_1\left(\theta\right)}{\rho}.$
- If the state is transitory then buyers will take into account the inefficiencies they will face at the time of future sales when valuing capital.
 - The problem is harder since $V_1\left(\theta\right)$ will be endogenous.
 - Different types of capital will have different **illiquidity discounts**.

Permanent: Seller's Problem

• Given P_t sellers face a stopping problem:

$$\sup_{\tau}\int_{0}^{\tau}\mathrm{e}^{-\rho t}\pi_{0}\left(\theta\right)dt+\mathrm{e}^{-\rho\tau}P_{t}$$

Permanent: Seller's Problem

• Given P_t sellers face a stopping problem:

$$\sup_{ au}\int_{0}^{ au}\mathrm{e}^{-
ho t}\pi_{0}\left(heta
ight) dt+\mathrm{e}^{-
ho au}P_{t}$$

• Skimming Property: If it is optimal for type θ to trade at time t, then strictly optimal for all $\theta' < \theta$ to trade at (or before) t.

Permanent: Seller's Problem

• Given P_t sellers face a stopping problem:

$$\sup_{ au}\int_{0}^{ au}\mathrm{e}^{-
ho t}\pi_{0}\left(heta
ight) dt+\mathrm{e}^{-
ho au}P_{t}$$

- Skimming Property: If it is optimal for type θ to trade at time t, then strictly optimal for all $\theta' < \theta$ to trade at (or before) t.
- Let χ_t denote the lowest quality asset that has not been traded by time t:

$$\chi_t = \inf \{\theta_i : \tau_i \ge t\}$$

Permanent: Equilibrium

Definition

A path for prices P and stopping rules $\tau\left(\theta\right)$ is a **Competitive Decentralized Equilibrium** if:

- (i) **Sellers Optimize:** Given P, $\tau(\theta)$ solves the Seller's Problem
- (ii) **Zero Profit:** Let $\Theta_t \neq \emptyset$ denote the set of types that trades at t, then:

$$P_{t} = E\left[V_{1}\left(\theta\right) \middle| \theta \in \Theta_{t}\right]$$

(iii) Market Clearing: $P_t \geq V_1(\chi_t)$

Permanent: Separating Equilibrium

• We will focus our analysis on the separating equilibrium where χ_t is strictly increasing and continuous.

Other equilibria can be ruled out with additional assumptions.

Zero Profit requires that:

$$P_{t} = V_{1}\left(\chi_{t}\right) = \frac{\pi_{1}\left(\chi_{t}\right)}{\rho}$$

Zero Profit requires that:

$$P_{t} = V_{1}\left(\chi_{t}\right) = \frac{\pi_{1}\left(\chi_{t}\right)}{\rho}$$

• Seller's Optimality:

$$\underbrace{\rho P_{t}}_{\text{cost}} = \underbrace{\frac{dP_{t}}{dt} + \pi_{0} \left(\chi_{t}\right)}_{\text{benefit}}$$

Zero Profit requires that:

$$P_{t} = V_{1}\left(\chi_{t}\right) = \frac{\pi_{1}\left(\chi_{t}\right)}{\rho}$$

• Seller's Optimality:

$$\underbrace{\rho P_t}_{\text{cost}} = \underbrace{\frac{dP_t}{dt} + \pi_0 \left(\chi_t\right)}_{\text{herefit}}$$

• Together:

$$\rho V_1\left(\chi_t\right) = \frac{d\chi_t}{dt} \frac{dV_1\left(\chi_t\right)}{d\chi} + \pi_0\left(\chi_t\right)$$

• Letting $\dot{\chi}_t = \frac{d\chi_t}{dt}$ and rearranging:

$$\dot{\chi}_t = \frac{\pi_1\left(\chi_t\right) - \pi_0\left(\chi_t\right)}{\frac{\pi_1'\left(\chi_t\right)}{\rho}}$$

• Letting $\dot{\chi}_t = \frac{d\chi_t}{dt}$ and rearranging:

$$\dot{\chi}_t = \frac{\pi_1\left(\chi_t\right) - \pi_0\left(\chi_t\right)}{\frac{\pi_1'\left(\chi_t\right)}{\rho}}$$

• The lowest type trades immediately:

$$\chi_0 = \underline{\theta}$$

• Letting $\dot{\chi}_t = \frac{d\chi_t}{dt}$ and rearranging:

$$\dot{\chi}_{t} = \frac{\pi_{1}\left(\chi_{t}\right) - \pi_{0}\left(\chi_{t}\right)}{\frac{\pi'_{1}\left(\chi_{t}\right)}{\rho}}$$

• The lowest type trades immediately:

$$\chi_0 = \underline{\theta}$$

• This differential equation + boundary condition pin down the equilibrium. Note that $F\left(\theta\right)$ only plays a role via its support, shape does not matter.

ullet Letting $\dot{\chi}_t = rac{d\chi_t}{dt}$ and rearranging:

$$\dot{\chi}_{t} = \frac{\pi_{1}\left(\chi_{t}\right) - \pi_{0}\left(\chi_{t}\right)}{\frac{\pi'_{1}\left(\chi_{t}\right)}{\rho}}$$

• The lowest type trades immediately:

$$\chi_0 = \underline{\theta}$$

- This differential equation + boundary condition pin down the equilibrium. Note that $F\left(\theta\right)$ only plays a role via its support, shape does not matter.
- ullet $F\left(heta
 ight)$ would still matter when calculating aggregates.

Permanent: Aggregate Output

Figure: Response to a sectoral productivity shift, where at t=0, sector B becomes the more productive sector. The economy recovers slowly from a productivity shift even though aggregate potential output is unchanged.

Permanent: Aggregate Productivity

Figure: Productivity is increasing across both sectors.

Permanent: Example:

Let
$$\pi_1\left(\theta\right)=c\theta+d$$
 and $\pi_0\left(\theta\right)=\theta$

$$\dot{\chi}_t = rac{\left(c-1
ight)\chi_t + d}{rac{c}{
ho}}$$

 $c=1
ightarrow \dot{\chi}_t$ is constant over time $c>1
ightarrow \dot{\chi}_t$ is increasing over time $c<1
ightarrow \dot{\chi}_t$ is decreasing over time

• Under full information we would have type specific prices $P\left(\theta\right)$ and all capital instantaneously reallocating.

- Under full information we would have type specific prices $P\left(\theta\right)$ and all capital instantaneously reallocating.
- Convex adjustment cost model:

- Under full information we would have type specific prices $P\left(\theta\right)$ and all capital instantaneously reallocating.
- Convex adjustment cost model:
 - For simplicity assume capital is homogenous.

- Under full information we would have type specific prices $P\left(\theta\right)$ and all capital instantaneously reallocating.
- Convex adjustment cost model:
 - For simplicity assume capital is homogenous.
 - Specify costs in terms of how capital is reallocated between sectors:

$$c\left(k,\dot{k},\ddot{k}\right) = \begin{cases} c\left(\dot{k}\right)^{2} & ('kdot') \\ c\left(\frac{k}{1-k}\right)^{2}(1-k) & ('ik') \\ c\left(\ddot{k}\right)^{2} & ('idot') \end{cases}$$

Focus on the planner's problem:

$$\max \int_{0}^{\infty} e^{-\rho t} \left(1 - k_{t}\right) \pi_{0} + k_{t} \pi_{1} - c\left(k_{t}\right)$$

Permanent: Costly Adjustment Cost Dynamics:

Adverse selection can deliver similar dynamics to those of the costly adjustment cost models!!

 Focus on stationary separating equilibria (only time since last shock matters).

- Focus on stationary separating equilibria (only time since last shock matters).
- Let $V_0(\theta,\chi)$ denote the value of a unit of capital inefficiently allocated.

- Focus on stationary separating equilibria (only time since last shock matters).
- Let $V_0(\theta,\chi)$ denote the value of a unit of capital inefficiently allocated.
- The seller's Bellman equation is:

$$\rho V_{0}\left(\theta,\chi\right)=\pi_{0}\left(\theta\right)+\lambda\left(V_{1}\left(\theta\right)-V_{0}\left(\theta,\chi\right)\right)+\frac{\partial V_{0}\left(\theta,\chi\right)}{\partial \chi}\dot{\chi}_{t}$$

- Focus on stationary separating equilibria (only time since last shock matters).
- Let $V_0(\theta,\chi)$ denote the value of a unit of capital inefficiently allocated.
- The seller's Bellman equation is:

$$\rho V_{0}\left(\theta,\chi\right)=\pi_{0}\left(\theta\right)+\lambda\left(V_{1}\left(\theta\right)-V_{0}\left(\theta,\chi\right)\right)+\frac{\partial V_{0}\left(\theta,\chi\right)}{\partial \chi}\dot{\chi}_{t}$$

ullet The cutoff type $(heta=\chi)$ must be locally indifferent:

$$P'(\chi) = \frac{\partial V_0(\theta, \chi)}{\partial \chi}|_{\theta = \chi}$$

- Focus on stationary separating equilibria (only time since last shock matters).
- Let $V_0(\theta,\chi)$ denote the value of a unit of capital inefficiently allocated.
- The seller's Bellman equation is:

$$\rho V_{0}(\theta,\chi) = \pi_{0}(\theta) + \lambda \left(V_{1}(\theta) - V_{0}(\theta,\chi)\right) + \frac{\partial V_{0}(\theta,\chi)}{\partial \chi} \dot{\chi}_{t}$$

ullet The cutoff type $(heta=\chi)$ must be locally indifferent:

$$P'\left(\chi\right) = \frac{\partial V_0\left(\theta,\chi\right)}{\partial \chi}|_{\theta = \chi}$$

• Combining we get:

$$\dot{\chi}_t = \frac{\rho V_1 \left(\chi_t \right) - \pi_0 \left(\chi_t \right)}{V_1' \left(\chi_t \right)}, \qquad \chi_0 = \underline{\theta}$$

- Focus on stationary separating equilibria (only time since last shock matters).
- Let $V_0(\theta,\chi)$ denote the value of a unit of capital inefficiently allocated.
- The seller's Bellman equation is:

$$\rho V_{0}\left(\theta,\chi\right)=\pi_{0}\left(\theta\right)+\lambda\left(V_{1}\left(\theta\right)-V_{0}\left(\theta,\chi\right)\right)+\frac{\partial V_{0}\left(\theta,\chi\right)}{\partial \chi}\dot{\chi}_{t}$$

ullet The cutoff type $(heta=\chi)$ must be locally indifferent:

$$P'(\chi) = \frac{\partial V_0(\theta, \chi)}{\partial \chi}|_{\theta = \chi}$$

• Combining we get:

$$\dot{\chi}_t = rac{
ho V_1 \left(\chi_t
ight) - \pi_0 \left(\chi_t
ight)}{V_1' \left(\chi_t
ight)}, \qquad \chi_0 = \underline{\theta}$$

• Before we were done but now we must determine $V_1\left(\theta\right)$ which is now endogenous.

Determining $V_1(\theta)$ from χ_t

$$V_{1}\left(\theta\right) = \frac{\rho}{\rho + \lambda} \pi_{1}\left(\theta\right) + \frac{\lambda}{\rho + \lambda} V_{0}\left(\theta, \underline{\theta}\right)$$

Also,

$$V_{0}\left(\theta,\underline{\theta}\right)=f\left(au\left(\theta
ight)
ight)rac{\pi_{0}\left(heta
ight)}{
ho}+\left(1-f\left(au\left(heta
ight)
ight)
ight)V_{1}\left(heta
ight)$$

 $\tau\left(\theta\right)$ is the time from that it takes to type θ to trade once the state switches.

 $f\left(\tau\left(\theta\right) \right)$ in addition takes into account discounting and the state switching.

Transitory: Characterization:

• Combining both we get:

$$V_{1}\left(heta
ight) = g\left(au\left(heta
ight)
ight) rac{\pi_{0}\left(heta
ight)}{
ho} + \left(1 - g\left(au\left(heta
ight)
ight)
ight) rac{\pi_{1}\left(heta
ight)}{
ho}$$

Transitory: Characterization:

• Combining both we get:

$$V_{1}\left(heta
ight) = g\left(au\left(heta
ight)
ight) rac{\pi_{0}\left(heta
ight)}{
ho} + \left(1 - g\left(au\left(heta
ight)
ight)
ight) rac{\pi_{1}\left(heta
ight)}{
ho}$$

Using the seller's indifference condition we can then obtain:

$$\dot{\chi}_{t} = \frac{\rho\left(1-g\left(t\right)+\frac{g'\left(t\right)}{\rho}\right)\left(\pi_{1}\left(\chi_{t}\right)-\pi_{0}\left(\chi_{t}\right)\right)}{g\left(t\right)\pi_{0}'\left(\chi_{t}\right)+\left(1-g\left(t\right)\right)\pi_{1}'\left(\chi_{t}\right)}$$

which (under mild regularity conditions) has a unique solution.

Existence and Uniqueness of Separating Equilibria

Theorem

There exists a unique (τ^*, V_1^*) such that the strategies consistent with (τ^*, V_1^*) constitute a fully separating equilibrium.

• Remark: If other equilibria exist they are basically characterized by a continuous flow of trade, a pause and one atom in which all remaining types trade. If the adverse selection problem is mild enough then the atom would take place at time zero. A sufficient condition to rule such equilibria out is that π_0 ($\bar{\theta}$) = π_1 ($\bar{\theta}$).

 Initial guess: The state will switch back soon-> less incentive to trade -> slower reallocation.

- Initial guess: The state will switch back soon-> less incentive to trade -> slower reallocation.
- Not correct!!

Result

Consider any two symmetric economies Γ_x and Γ_y , which are identical except that $\lambda_x < \lambda_y$. There exists a $\overline{t} > 0$ such that the rate of reallocation is strictly higher in Γ_y than in Γ_x prior to \overline{t} , i.e., $\chi_y'(t) > \chi_x'(t)$ for all $t \in [0,\overline{t}]$.

Explanation:

ullet Fix the equilibrium $\dot{\chi}_t$ in economy $\Gamma_{\!\scriptscriptstyle X}$ and increase λ

- ullet Fix the equilibrium $\dot{\chi}_t$ in economy $\Gamma_{\!\scriptscriptstyle X}$ and increase λ
 - delay incurred more frequently,

- ullet Fix the equilibrium $\dot{\chi}_t$ in economy $\Gamma_{\!\scriptscriptstyle X}$ and increase λ
 - delay incurred more frequently,
 - marginal cost of delay increases,

- ullet Fix the equilibrium $\dot{\chi}_t$ in economy $\Gamma_{\!\scriptscriptstyle X}$ and increase λ
 - delay incurred more frequently,
 - · marginal cost of delay increases,
 - ullet more incentive to mimic heta

- ullet Fix the equilibrium $\dot{\chi}_t$ in economy $\Gamma_{\!\scriptscriptstyle X}$ and increase λ
 - delay incurred more frequently,
 - marginal cost of delay increases,
 - ullet more incentive to mimic heta
- ullet Types close to $\underline{ heta}$ would prefer to accept sooner when λ increases.

- ullet Fix the equilibrium $\dot{\chi}_t$ in economy $\Gamma_{\!\scriptscriptstyle X}$ and increase λ
 - delay incurred more frequently,
 - · marginal cost of delay increases,
 - ullet more incentive to mimic heta
- Types close to $\underline{\theta}$ would prefer to accept sooner when λ increases.
- Reallocation must "speed up" at the bottom in equilibrium.

• Empirical Evidence: Productivity dispersion correlated with misallocation.

- Empirical Evidence: Productivity dispersion correlated with misallocation.
- The model provides a causal link.

- Empirical Evidence: Productivity dispersion correlated with misallocation.
- The model provides a causal link.
- ullet Dispersion can be measure by $ar{ heta}-\underline{ heta}$

- Empirical Evidence: Productivity dispersion correlated with misallocation.
- The model provides a causal link.
- ullet Dispersion can be measure by $ar{ heta}-\underline{ heta}$
 - Misallocation of quality θ capital:

$$m(\theta) = 1 - \frac{\rho V(\theta) - \pi_0(\theta)}{\pi_1(\theta) - \pi_0(\theta)}$$

- Empirical Evidence: Productivity dispersion correlated with misallocation.
- The model provides a causal link.
- ullet Dispersion can be measure by $ar{ heta}-\underline{ heta}$
 - Misallocation of quality θ capital:

$$m(\theta) = 1 - \frac{\rho V(\theta) - \pi_0(\theta)}{\pi_1(\theta) - \pi_0(\theta)}$$

• Aggregate misallocation:

$$ar{m}=\int_{\underline{ heta}}^{ar{ heta}}m\left(heta
ight)dF\left(heta
ight)$$

- Empirical Evidence: Productivity dispersion correlated with misallocation.
- The model provides a causal link.
- ullet Dispersion can be measure by $ar{ heta}-\underline{ heta}$
 - Misallocation of quality θ capital:

$$m(\theta) = 1 - \frac{\rho V(\theta) - \pi_0(\theta)}{\pi_1(\theta) - \pi_0(\theta)}$$

Aggregate misallocation:

$$ar{m}=\int_{\underline{ heta}}^{ar{ heta}}m\left(heta
ight)dF\left(heta
ight)$$

27 / 28

 Presented an adverse selection based mechanism for generating slow moments of capital.

- Presented an adverse selection based mechanism for generating slow moments of capital.
- A microfoundation for convex adjustment cost models.

- Presented an adverse selection based mechanism for generating slow moments of capital.
- A microfoundation for convex adjustment cost models.
- Capable of generating rich dynamics/predictions.

- Presented an adverse selection based mechanism for generating slow moments of capital.
- A microfoundation for convex adjustment cost models.
- Capable of generating rich dynamics/predictions.
 - Delayed response to shocks.

- Presented an adverse selection based mechanism for generating slow moments of capital.
- A microfoundation for convex adjustment cost models.
- Capable of generating rich dynamics/predictions.
 - Delayed response to shocks.
 - Productivity dispersion amplifies misallocation.

- Presented an adverse selection based mechanism for generating slow moments of capital.
- A microfoundation for convex adjustment cost models.
- Capable of generating rich dynamics/predictions.
 - Delayed response to shocks.
 - Productivity dispersion amplifies misallocation.
 - TFP slowdowns in response to innovation

- Presented an adverse selection based mechanism for generating slow moments of capital.
- A microfoundation for convex adjustment cost models.
- Capable of generating rich dynamics/predictions.
 - Delayed response to shocks.
 - Productivity dispersion amplifies misallocation.
 - TFP slowdowns in response to innovation
- Several possible applications:

- Presented an adverse selection based mechanism for generating slow moments of capital.
- A microfoundation for convex adjustment cost models.
- Capable of generating rich dynamics/predictions.
 - Delayed response to shocks.
 - Productivity dispersion amplifies misallocation.
 - TFP slowdowns in response to innovation
- Several possible applications:
 - Physical capital reallocation.

- Presented an adverse selection based mechanism for generating slow moments of capital.
- A microfoundation for convex adjustment cost models.
- Capable of generating rich dynamics/predictions.
 - Delayed response to shocks.
 - Productivity dispersion amplifies misallocation.
 - TFP slowdowns in response to innovation
- Several possible applications:
 - Physical capital reallocation.
 - Human capital reallocation.

- Presented an adverse selection based mechanism for generating slow moments of capital.
- A microfoundation for convex adjustment cost models.
- Capable of generating rich dynamics/predictions.
 - Delayed response to shocks.
 - Productivity dispersion amplifies misallocation.
 - TFP slowdowns in response to innovation
- Several possible applications:
 - Physical capital reallocation.
 - Human capital reallocation.
 - Innovation and new investment.

- Presented an adverse selection based mechanism for generating slow moments of capital.
- A microfoundation for convex adjustment cost models.
- Capable of generating rich dynamics/predictions.
 - Delayed response to shocks.
 - Productivity dispersion amplifies misallocation.
 - TFP slowdowns in response to innovation
- Several possible applications:
 - Physical capital reallocation.
 - Human capital reallocation.
 - Innovation and new investment.
 - Slow moving financial capital.