Repeated Signaling and Firm Dynamics

Christopher A. Hennessy¹, Dmitry Livdan² and Bruno Miranda³

¹London Business School ²U.C. Berkeley ³Countrywide Bank

October 2009

The Agenda

- We have *numerous* dynamic structural models of trade-off theory.
- Limited set of dynamic moral hazard models: Bernanke and Gertler (1989); Clementi and Hopenhayn (2006); DeMarzo and Fishman (2007); and Biais et al. (2007).
- Calibrated model of moral hazard: Carlstrom and Fuerst (1997).

The Agenda Continued

- Ross (2005): "The introduction of the issues raised by the presence of asymmetric information in the determination of capital structure and the integration of these issues into the intertemporal neoclassical model are a major challenge."
- Gomes (2001): "Ideally we would prefer to model financial intermediation endogenously. This approach, however, would demand a far more complex model..."
- Baker & Wurgler (2002): "In practice, equity market timing appears to be an important aspect of real corporate financial policies."

The basic intuition of model

- Adverse selection most severe when net worth low.
- Shadow value of internal funds high when net worth low.
- Risk-neutral insider becomes pseudo-risk-averse.
- In LCSE, firm with negative info is insured (equity+financial slack).
- In LCSE, firm signals positive info with high debt. Default costs induce underinvestment.
- Net worth low \Rightarrow COSTLY separation \Rightarrow pooling possible.

Assumption 3 (Shocks)

- Markovian private shock $\theta_t \in \{\theta_L, \theta_H\}$ with $0 < \theta_L < \theta_H$.
- $p(\theta_i|\theta_j)$ =probability of θ_i conditional on lagged type θ_j .
- Public shock ε_t is iid with $\underline{\varepsilon} > 0$.
- Public shock ε_t has density $f: [\underline{\varepsilon}, \infty) \to [0, 1]$ which is continuously differentiable.

Solving for LCSE

PROGRAM L

$$\Gamma_L^S(w) \equiv \max_{a \in \mathcal{A}} \quad d_L + (1 - s_L)\Omega(b_L, k_L, \theta_L)$$

s.t.
$$BC_L : d_L + k_L - w \le \rho(b_L, k_L, \theta_L) + s_L\Omega(b_L, k_L, \theta_L)$$

$$\Rightarrow a_L^S(w) \equiv (b_L^S, d_L^S, k_L^S, s_L^S)(w)$$

Solving for LCSE (continued)

PROGRAM H

$$\Gamma_H^S(w) \equiv \max_{a \in \mathcal{A}} \quad d_H + (1 - s_H)\Omega(b_H, k_H, \theta_H)$$

s.t.

$$BC_H : d_H + k_H - w \le \rho(b_H, k_H, \theta_H) + s_H \Omega(b_H, k_H, \theta_H)$$
$$IC : d_L^S + (1 - s_L^S) \Omega(b_L^S, k_L^S, \theta_L) \ge d_H + (1 - s_H) \Omega(b_H, k_H, \theta_L)$$
$$\Rightarrow a_H^S(w) \equiv (b_H^S, d_H^S, k_H^S, s_H^S)(w)$$

Proposition 2

Let (a_L^S, a_H^S) be least-cost separating contracts with respect to (V_L^S, V_H^S) where

$$V_j^S(w) \equiv \sum_{i \in \{L,H\}} p(\theta_i | \theta_j) \Gamma_i^S(w)$$

and

$$\underline{w} \equiv -\max_{b,k} \quad \rho(b,k,\theta_L) + \Omega(b,k,\theta_L) - k.$$

Then $(\underline{w}, \underline{w}, a_L^S, a_H^S, V_L^S, V_H^S)$ is a recursive perfect Bayesian equilibrium.

Proof: $\Gamma_L^S(\underline{w}) = 0 \Rightarrow \Gamma_H^S(\underline{w}) = 0 \Rightarrow V_L^S(\underline{w}) = V_H^S(\underline{w}) = 0.$

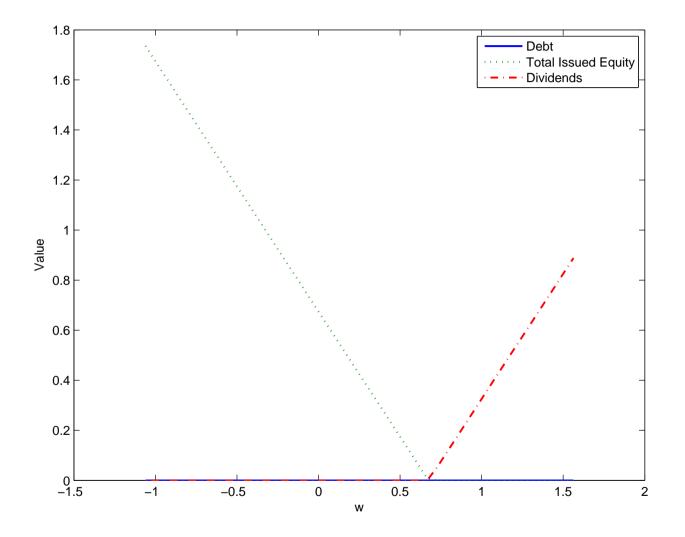
Solution to program L

Proposition.

$$b_L^* \le 0.$$
$$k_L^* > k_L^{FB}$$

Dividends and equity issuance fill remaining financing gap.

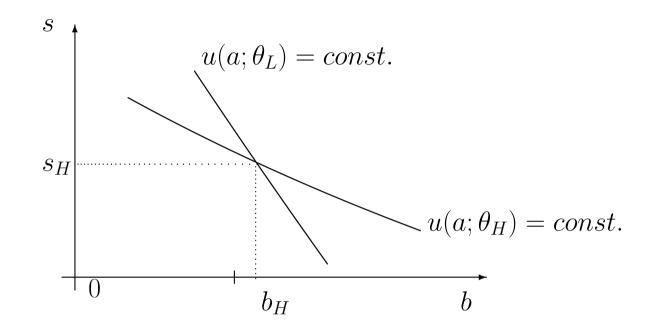
LCSE Financing policies - low value of θ



High-Type Debt

$$\begin{split} \beta\gamma \left[\int_{\varepsilon_{HH}^d}^{\infty} [V'_H - 1] f(d\varepsilon) + \frac{\partial \varepsilon_{HH}^d}{\partial b_H} f(\varepsilon_{HH}^d) \phi[(1 - \delta)k_H^S + \pi(k_H^S, \theta_H, \varepsilon_{HH}^d) + |\underline{w}|] \right] \\ &= \left[\frac{\mu \Omega(b_H^S, k_H^S, \theta_L)}{\lambda} \right] \left[\left| \frac{ds}{db} (a_H^S; \theta_L) \right| - \left| \frac{ds}{db} (a_H^S; \theta_H) \right| \right]. \end{split}$$

Debt-for-Equity Substitution as Positive Signal



High-Type Investment

$$\begin{split} 1 &= \beta \gamma \left[\int_{\varepsilon_{HH}^{d}}^{\infty} V'_{H} \bullet [1 - \delta + \pi_{k}(k_{H}^{S}, \theta_{H}, \varepsilon)] f(d\varepsilon) \right] \\ &+ \beta \gamma (1 - \phi) \int_{-\infty}^{\varepsilon_{HH}^{d}} [1 - \delta + \pi_{k}(k_{H}^{S}, \theta_{H}, \varepsilon)] f(d\varepsilon) \\ &- \beta \gamma \frac{\partial \varepsilon_{HH}^{d}}{\partial k_{H}} f(\varepsilon_{HH}^{d}) \phi [(1 - \delta)k_{H}^{S} + \pi(k_{H}^{S}, \theta_{H}, \varepsilon_{HH}^{d}) + |\underline{w}|] \end{split}$$

$$+ \left[\frac{\mu\Omega(b_H^S,k_H^S,\theta_L)}{\lambda}\right] \left[\frac{ds}{dk}(a_H^S;\theta_H) - \frac{ds}{dk}(a_H^S;\theta_L)\right].$$

- Use symmetric info model to estimate five technological parameters: $(\alpha, p, \overline{\varepsilon}, \theta_L, \theta_H)$.
- Match moments from a symmetric info economy to moments from Gomes (2001):
 - Mean capital stock
 - Mean and variance of investment rate
 - mean profit rate
 - Mean of Tobin's Q
- Do it by minimizing the average squared percentage error over the five moments.
- Use these moments to solve the model with asymmetric info for $\phi = 0.05$ and 0.15.

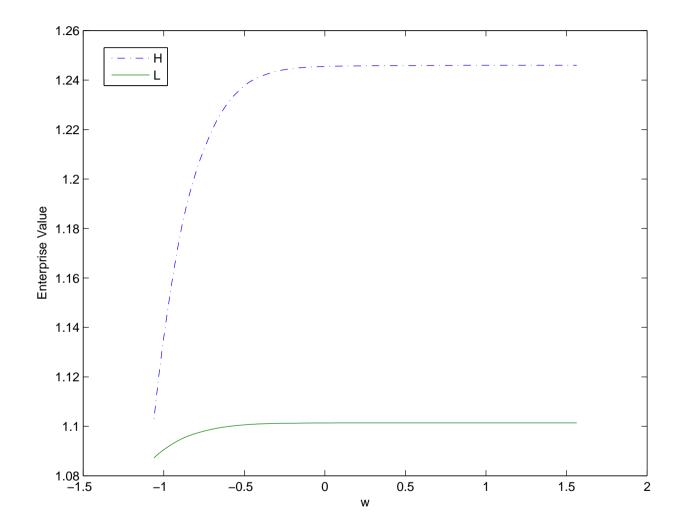
Parameter Values

Notation	Parameter Value	Definition
r	0.0400	Risk-Free Rate
$1-\gamma$	0.0500	Catastrophic Event Probability
δ ,	0.1000	Capital Depreciation Rate
$\overline{\varepsilon}$	0.8568	Mean of Public Shock
$ heta_L$	0.3226	Low Type Productivity
$ heta_{H}$	0.3851	High Type Productivity
$p(heta_i heta_i)$	0.9100	Type Persistence
α	0.6000	Capital Elasticity of Profits
ϕ	0.05 or 0.15	Proportional Bankruptcy Costs

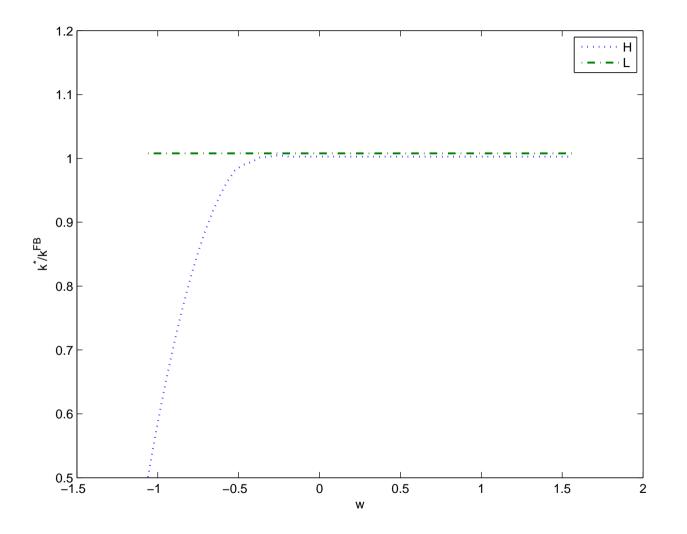
Model and Data Moments

	Data	Symmetric Information	Signaling Model	Signaling Model
		Model	$(\phi = 0.05)$	$(\phi = 0.15)$
Average size (k_t)	0.8089	0.8556	0.7698	0.8125
Average investment rate $\left(\frac{i_{t+1}}{k_t}\right)$	0.1450	0.1091	0.1573	0.1588
Variance of investment rate	0.0193	0.0198	0.0516	0.0392
Mean Tobin's $q\left(\frac{v_{t+1}+b_t}{k_t}\right)$	1.5600	1.4153	1.8825	1.7763
Average profit rate $\left(\frac{\pi_t}{k_t}\right)$	0.2920	0.3246	0.3457	0.3354
Average market leverage $\left(\frac{\rho_t}{\rho_t + \Omega_t}\right)$	0.1204	0.0000	0.1430	0.1196
Average payout ratio $\left(\frac{d_t}{\pi_t - \rho_t + b_t}\right)$	0.2226	1.0000	0.3121	0.3170

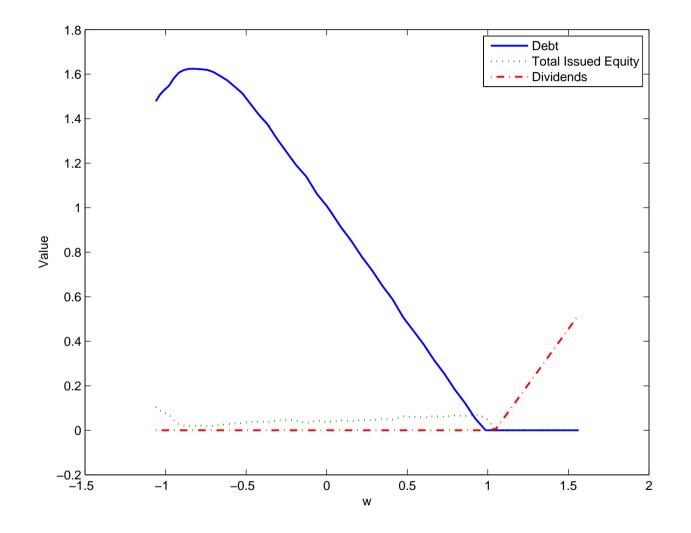
Enterprise Value Functions: $V_i(w) - w$



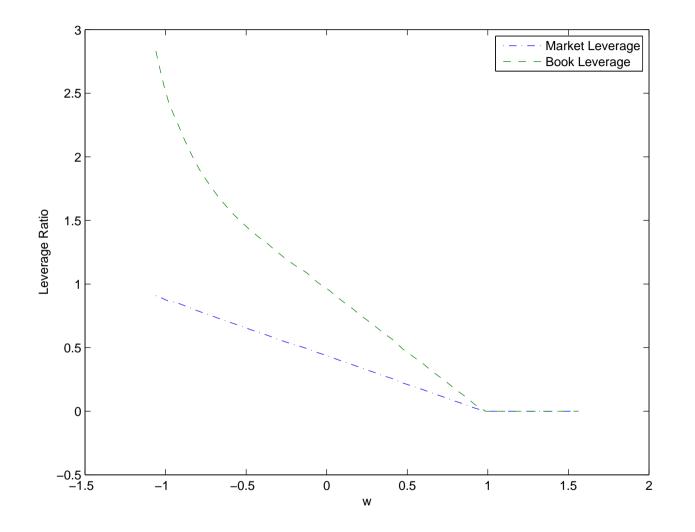
LCSE Capital allocations



LCSE Financing policies - high value of θ



Book and Market Leverage



Wealth Sensitivity Regressions

Parameter	Wealth Sensitivity	Std.	Wealth Sensitivity	Std.	
	$\phi = 0.05$		$\phi = 0.15$		
Market leverage $\left(\frac{\rho_t}{\rho_t + \Omega_t}\right)$	-0.2219	0.0872	-0.2821	0.0947	
Book leverage $\left(\frac{\rho_t}{k_t}\right)$	-0.2642	0.0806	-0.3096	0.1096	
Dividends (d_t)	0.4182	0.0687	0.4147	0.0672	
Growth rate $\left(\frac{v_{t+1}-v_t}{v_t}\right)$	-0.6277	0.2663	-0.7147	0.2957	

Announcement Effect Regressions

• Abnormal announcement return $AR_t = (\Gamma_{\theta_t}(w_t) - V_{\theta_{t-1}}(w_t))/V_{\theta_{t-1}}(w_t)$

	$\phi = 0.05$			$\phi = 0.15$	
Investment Rate	$rac{ ho_t}{k_t}$	$1_{\{\rho_{t-1}=0,\rho_t>0\}}\frac{\rho_t}{k_t}$	Investment Rate	$\frac{\rho_t}{k_t}$	$1_{\{\rho_{t-1}=0,\rho_t>0\}\frac{\rho_t}{k_t}}$
0.1477	_	_	0.1511	v	_
(0.0245)	-	-	(0.0178)		-
-	0.0620	-	-	0.1616	-
-	(0.0400)	-	-	(0.1238)	-
-	0.0597	0.2822	-	0.0687	0.2891
-	(0.0449)	(0.0721)	-	(0.0775)	(0.0738)
0.1495	0.0039	-	0.1475	0.0211	-
(0.0487)	(0.0724)	-	(0.0227)	(0.0413)	-
0.1411	0.0329	0.0127	0.1411	0.0329	0.0127
(0.0405)	(0.0914)	(0.1296)	(0.0405)	(0.0914)	(0.1296)

Conclusion

- First dynamic structural model with signaling (hidden information) as opposed to trade-off theory or hidden action.
- Simple computational algorithm to determine equilibrium.
- Repeated signaling leads to precautionary saving, overinvestment by low type and underinvestment by high type.
- Equilibrium evolves from pooling to separating.
- Default risk for given debt contingent upon equilibrium.